Какие нагрузки испытывает подвеска автомобиля

Нагрузки на подвеску автомобиля

Нагрузки на упругий элемент:

Зависимая подвеска (рис. 18, а). Нагрузка зависит от реакции Rzна колесо и веса неподрессоренных масс Gн.м:

Рисунок 18. Расчетная схема для определения нагрузок на упругие элементы подвески

Независимая подвеска.

Для двухрычажной подвески (рис. 19, а)нагрузка на упругий элемент

где G ‘к — вес колеса и направляющего устройства.

Рисунок 19. Расчетная схема для определения нагрузок на упругие элементы подвески

Пружины в качестве основных упругих элементов широко применяются в подвесках легковых машин повышенной проходимости и в качестве вспомогательных элементов, например ограничителей или корректирующих устройств, на других машинах. В первом случае используются цилиндрические пружины, витые из прутка круглого или прямоугольного сечения; характеристика их линейна. Для ограничителей хода применяются конические пружины.

Усилие, сжимающее пружину, определяется кинематической схемой подвески.

Рисунок 20. Расчетная схема подвески с цилиндрической пружиной

Усилие Рn может быть выражено также следующим образом:

где λ m ах — максимальная деформация пружины; сn — жесткость пружины.

где τ m ах — максимальное напряжение в пружине; d — диаметр прутка; D — средний диаметр пружины; τдоп — допускаемое напряжение; τдоп = 600-700 МПа.

2.2 Колёса и шины автомобиля

Колесный движитель представляет собой устройство, преобразующее работу двигателя в поступательное движение машины. Он состоит из трех основных частей: шины, обода и ступицы.

Анализ и оценка конструкции автомобильных шин и колес

1— каркас; 2 — брекер; 3 — протектор; 4 — боковина; 5 — борт; 6 — носок борта; 7 — основание борта; 8 — пятка борта; 9 — бортовая лента; 10 — бортовая проволока; 11 — обертка; 12 — наполнительный шнур; H — высота профиля покрышки; H1 — расстояние от основания до горизонтальной осевой линии профиля; H2 — расстояние от горизонтальной оси до экватора; В — ширина профиля; B6— корона; R — радиус кривизны протектора; D — наружный диаметр шины; d — посадочный диаметр шины; h — стрела дуги протектора; С — ширина раствора бортов; а — ширина борта.

Полуоси, балка и поворотный кулак автомобиля

Т.к. автомобиль ВАЗ-2108 является переднеприводным значит у него не заднего моста.

При прямолинейном движении значения моментов M и сил P принимаются максимальными. Рассмотрим изгиб балки вертикальной плоскости (рис. 22).

Рисунок 22. Расчетная схема балки ведущего моста и эпюры моментов

где R»z1и R»z2 — нормальные реакции опорной поверхности за вычетом веса Колеса GK.

Нормальные реакции опорной поверхности от нагрузки на мост G2

где m2 = 1,1. 1,2— коэффициент перераспределения нагрузки по мостам.

Изгиб картера в горизонтальной плоскости под нагрузкой от силы тяги Рт

где Рт1т2 = Rz 1 φ = Rz 2 φ, (φ = 0,8. 0,9 — коэффициент сцепления шин с опорной поверхностью).

Момент, скручивающий балку, Мкр = P т1 r к = R т2 r к (rк—радиус качения колеса).

Результирующее напряжение от изгиба и кручения для круглого трубчатого сечения

,

где W = 0,2( D 4 — d 4 )/ D — момент сопротивления трубчатого сечения.

Для прямоугольного и коробчатого сечения напряжения в вертикальной и горизонтальной плоскостях определяют раздельно и суммируют арифметически: σи = Mи.в / Wв + Mи.г /Wг. Напряжения кручения при этом не суммируют:

Максимальные напряжения изгиба относятся к крайним волокнам сечения, а напряжения кручения к средним волокнам сечения.

При заносе балку моста рассчитывают на изгиб в вертикальной плоскости, считая при этом Рт1т2 = 0.

Изгибающие моменты в вертикальной плоскости

где R’z1 и R’z2 — нормальные реакции опорной поверхности при заносе.

Условно принимается φ = 1.

При динамическом нагружении изгибающий момент в вертикальной плоскости:

где Кд=1,5. 3 — коэффициент динамичности.

Для балок мостов, литых из стали и чугуна, [τи] = 300 МПа, для штампованных из стального листа [τи] = 500 МПа.

Определение нагрузок и расчет переднего моста производят так же, как и заднего моста. При торможении коэффициент перераспределения нагрузки на передний мост m1 = 1,1.„1,2. Необходимо учитывать переменное сечение балки: двутавровое в средней части и после рессорной площадки постепенно переходящее в круглое. Вертикальные реакции Rzl = Rz2 = m1G1/2,где G1 — нагрузка на передние колеса.

Для балки управляемого моста жесткость важна для сохранения углов установки колес. Жесткость ведущего моста влияет на условия зацепления зубчатых передач, на нагрузку подшипников и на нагруженность полуосей.

Прогиб балки равен силе в заданном сечении, отнесенной к жесткости сечения f = Pи / (EJx).Балка нагружена в местах крепления рессор. Переменное сечение балки затрудняет расчет. В таких случаях или упрощают схему и ведут расчет по наиболее опасному сечению, или усложняют расчет, применяя метод конечных элементов.

Прогиб балки грузовых автомобилей достигает 2. 3 мм.

Рисунок 23. Расчетная схема поворотной цапфы

Поворотный кулак(рис. 23). Расчет ведется для тех же трех случаев нагружения: торможения при прямолинейном движении, заноса и динамического нагружения.

При торможении суммарный момент изгиба в вертикальной плоскости

,

где R » z 1 = Rzl — G к ; Ртор = Rz φ — тормозная сила на колесе, нагружающая цапфу.

При заносе напряжение изгиба на цапфе при Ртор = 0

При динамическом нагружении напряжение изгиба

где коэффициент динамичности Кд = 1,5. 3.

Для стали 30Х и 40Х допускаемое напряжение [σи] = 500 МПа.

Рисунок 24. Расчетная схема шкворня

Шкворень. Расчетные режимы, применяемые при расчете шкворня, те же, что и при расчете цапф. Наклоном шкворня пренебрегаем.

При торможении реакции, нагружающие верхний R’шк и нижний R»шк концы шкворня, обусловленные действием:

Суммарная сила, действующая на нижний конец шкворня,

.

Суммарная сила, действующая на верхний конец шкворня:

.

На шкворень действуют напряжения:

Для расчета принимают наибольшее из значений Р’шкΣ, Р»шкΣ.

При заносе действуют только поперечные силы.

От вертикальной реакции:

От боковой силы Ry и от момента, создаваемого этой силой:

Суммарная нагрузка на левом шкворне:

Суммарная нагрузка на правом шкворне:

Напряжения определяются так же, как и при торможении.

При динамическом нагружении напряжение изгиба в вертикальной плоскости

Расчетные режимы полуосей. Полуразгруженную полуось рассчитывают на изгиб и кручение так же как балку моста для трех случаев нагружения: прямолинейного движения, заноса и динамического нагружения.

При прямолинейном движении — результирующий изгибающий момент полуоси в вертикальной и горизонтальной плоскостях

момент кручения полуоси:

.

При заносе изгибающие моменты на правом и левом колесах

При динамическом нагружении

При расчете полуразгруженной полуоси плечо изгиба b определяется как расстояние между плоскостями, проходящими через центр опорной площадки колеса и через центр опорного подшипника.

Полностью разгруженные и разгруженные на три четверти полуоси рассчитывают только на кручение и определяют их жесткость.

Касательное напряжение кручения:

Угол закручивания полуоси:

здесь момент инерции Jкр = πd 4 /32, модуль сдвига G = 85 ГПа. Угол закручивания обычно ограничивается θ = 9. 15° на 1 м длины полуоси. Меньшее значение угла закручивания характеризует повышенную жесткость, большее значение — склонность к колебаниям и резонансным явлениям.

Полуразгруженная полуось разрушается в опасном сечении под подшипником. Здесь полуось должна быть утолщена. Разгруженная полуось разрушается в месте начала шлицев. Рекомендуется осадка конца полуоси под шлицевой конец для увеличения диаметра опасного сечения.

Читайте также:  Светодиодные лампы для автомобиля во владивостоке

Несущая система автомобиля

Дата добавления: 2019-07-15 ; просмотров: 265 ; Мы поможем в написании вашей работы!

Источник

Сообщества › DRIVE2 LowCars › Блог › ЛикБез о работе «подвесок»

Работа автомобильных подвесок

Многим раллийным пилотам знакома такая ситуация: хороший автомобиль подготовлен по высшему классу, гонщик проявляет чудеса концентрации и пилотирует болид на пределе собственных возможностей – а в результате занимает место даже не в первой десятке. Чтобы побороть неудачи, раллист вкладывает колоссальные средства в запчасти, доводит до белого каления несчастный мотор, а то и вовсе начинает сомневаться в собственных водительских качествах.

Но затем он находит правильные настройки подвесок и сразу получает невиданную ранее максимальную скорость, «рельсовую» управляемость и долгожданное место на подиуме.

В автоспорте, особенно в ралли, за неправильные настройки амортизаторов можно поплатиться минутами на финише. Если колеса не касаются земли, нет никакого смысла ни в мощном моторе, ни в классном гонщике. Чемпион России по ралли 2004 года Геннадий Брославский и механики команды FreeDRIVE рассказали нам, как устроены подвески, и поделились секретами правильной настройки автомобиля. Первым делом Геннадий сообщил, что правильно говорить не «подвеска», а «подвески», так как их на автомобиле четыре.

Автогонщики тоже люди, и сильная тряска и удары могут негативно сказаться на их здоровье, и все же рассуждения о комфорте мы оставим любителям семейных седанов. Всем известно, что подвески нужны автомобилю, чтобы как можно дольше сохранять сцепление всех четырех колес с дорогой. При этом важно, чтобы колеса не только касались дорожного полотна, но и принимали на себя как можно большую часть веса автомобиля. В идеале вес должен распределяться между колесами равномерно. Но во множестве ситуаций (крен автомобиля в повороте, выезд на уклон, проезд над ямой) у автомобиля буквально «почва уходит из-под ног». В такой ситуации важно, чтобы подвеска не только дотянулась до земли, но и с достаточным усилием прижала колесо к отдалившейся дороге во избежание пробуксовки. Способность подвески отжимать колесо от автомобиля называют отбоем.

Другая важная задача подвески – гасить удары при проезде выпуклых неровностей, чтобы они не передавались на кузов. Допустим, автомобиль на высокой скорости наезжает на камень. Слишком жесткая подвеска передаст прыжок колеса на кузов. При этом ходовая часть испытает нежелательную избыточную нагрузку, а кузов подпрыгнет, увлекая за собой и разгружая остальные колеса. Кроме того, на толчки кузова уходит энергия, поэтому максимальная скорость прыгающего и вибрирующего автомобиля будет меньше. Если же подвеска в такой ситуации позволит кузову остаться неподвижным, автомобиль сохранит скорость и управляемость. Такое свойство подвески называется сжатием.

Стойка подвески состоит из пружины и амортизатора. Пружина выполняет исключительно силовую функцию (удерживает вес кузова), поведением подвески управляет амортизатор, причем его роль не сводится исключительно к гашению колебаний, как упрощенно говорят в автошколах. Пружина подбирается по трем основным параметрам: она должна обеспечивать необходимый ход подвески при данном весе автомобиля, а также создавать прогрессию (при очень сильном сжатии – прогрессивно увеличивать усилие, чтобы подвеску не «пробивало»). Пружина должна точно соответствовать амортизатору, поэтому спортивные стойки подвески часто продаются в сборе. На раллийных стойках нередко можно встретить подпружинники – короткие пружинки, установленные под основными пружинами. Подпружинники более мягкие, чем основные пружины, они хорошо отрабатывают мелкие неровности трассы. А когда «пробиваются» (сжимаются полностью), в дело вступают мощные основные пружины, способные разобраться с серьезными препятствиями.

Дорожный просвет раллийного автомобиля, как правило, регулируется не заменой пружин, а простой перестановкой их чашек выше или ниже. Ход подвески можно скорректировать, настроив амортизатор, он обратно пропорционален усилию сжатия.

Простейший амортизатор можно описать как заполненный маслом цилиндр (присоединен к колесу), внутри которого перемещается поршень (его шток соединен с кузовом). В поршне имеются клапаны. При сжатии масло из нижней части цилиндра переходит через клапаны в верхнюю, при отбое – наоборот. Из-за ограниченной пропускной способности клапанов создается сопротивление движению штока. При сжатии и отбое работают разные клапаны, поэтому, изменяя их сечение, можно изменять усилия сжатия и отбоя в отдельности. Конструкция некоторых амортизаторов, например KONI Sport, позволяет регулировать жесткость, не поднимая автомобиль – достаточно просто открыть капот или багажник. Регулировочный вентиль в них соединен со стержнем, проходящим внутри штока прямо к поршню.

На гражданских автомобилях получили распространение двухтрубные амортизаторы. В них рабочий цилиндр с отверстием в дне расположен внутри дополнительного резервуара с маслом. Такая конструкция позволяет проще всего реализовать воздушный или газовый подпор, препятствующий вспениванию масла: газ можно закачать в верхнюю часть резервуара, там он и останется. Кроме того, между рабочим цилиндром и резервуаром можно установить дополнительный клапан, управляющий усилием отбоя или сжатия. Основной недостаток двухтрубного амортизатора – склонность к перегреву. Разогретое масло становится менее вязким, и характеристики амортизатора кардинально меняются.

Существуют однотрубные амортизаторы с газовым подпором высокого давления. В них газ отделяется от масла дополнительным поршнем. Такие амортизаторы хорошо охлаждаются, могут работать в любых положениях, в том числе горизонтально (на автомобилях типа «формула»). Однако они требуют бескомпромиссной точности изготовления и полностью выходят из строя при утечке газа.

В наиболее дорогостоящих амортизаторах, применяется схема с выносным резервуаром, сочетающая в себе достоинства однотрубных и двухтрубных амортизаторов. Резервуар соединяется с амортизатором перевернутого типа (цилиндр соединяется с кузовом, шток – с колесом) гибким шлангом. Внутри резервуара располагается компенсационная камера с газом, отделенная от масла дополнительным поршнем. В последних моделях фирмы применяются длинные армированные шланги, которые можно расположить рядом с радиатором охлаждения автомобиля. В клапанах Ohlins используется алюминиевый элемент, который расширяется при нагревании и уменьшает сечение, компенсируя изменение вязкости масла, благодаря чему амортизаторы ведут себя одинаково в любых условиях. Часть регулировок амортизаторов располагается на выносных резервуарах и доступна под капотом.

Потоки скорости: движение масла при разных скоростях штока

Когда колесо автомобиля наезжает на препятствие, шток амортизатора развивает значительную скорость. Масло не успевает проходить через клапаны, и давление внутри амортизатора существенно возрастает. Часть клапанов в высших моделях амортизаторов Ohlins настроена на срабатывание лишь при высоком давлении. Такие стойки предоставляют механикам возможность регулировки четырех раздельных параметров: сжатия и отбоя при высоких скоростях штока, сжатия и отбоя при низких скоростях штока.

Бег с препятствиями

Мягко стелет, да жестко ехать

Жесткость амортизаторов при малых скоростях штока определяет поведение автомобиля на относительно ровной дороге: на продольных волнах, на подъемах и спусках и, конечно же, в поворотах. Возьмем простой пример: поворот на ровном сухом асфальте, в котором нагружаются внешние колеса и разгружаются внутренние. При абсолютно жестких подвесках (например, при их отсутствии, как на карте) крен автомобиля будет минимальным, максимум веса автомобиля передастся внешним колесам (что само по себе хорошо), однако даже минимального крена хватит, чтобы внутренние колеса оторвались от земли. При слишком мягких подвесках крен будет значительным, внутренние колеса хоть и дотянутся до земли, но окажутся недостаточно загруженными и уйдут в пробуксовку. При этом в S-образном повороте может возникнуть раскачка. Очевидно, что для ровной дороги существует оптимальная настройка, когда крен будет небольшим, а прижимная сила на колесах значительная. Однако в некоторых случаях от оптимума стоит отступить.

Читайте также:  Стажировка водителя автомобиля как оформляется

Хорошо настроенная асфальтовая машина может резко реагировать на управляющие действия, мгновенно меняя курс при малейшем повороте руля. Такая резкость требует надежного сцепления колес с дорогой. На скользкой дороге резкие движения могут привести к потере управления. Машину лучше сделать более мягкой: тогда управляющие действия не спровоцируют слишком сильные ускорения кузова, ситуация будет развиваться плавно и предсказуемо.

Помимо настроек амортизаторов пилот может выбирать жесткость стабилизатора поперечной устойчивости (если это не запрещено правилами, как в группе №2). Стабилизатор препятствует кренам в поворотах, но ограничивает ход подвесок. Поэтому, скажем, на прямой, изобилующей буграми и ямами, автомобиль стабильнее и быстрее проедет без него.

Окинув взглядом все вышеперечисленные противоречивые требования к подвескам, остается только восхищаться теми гонщиками и механиками, которым удается на каждой трассе находить наименьшее из всех зол. Лучший судья здесь – секундомер. Когда находишь хорошие настройки, часто кажется, что поехал медленнее – требуется меньше движений, меньше спешки.

Настройки подвесок в значительной мере зависят от стиля и предпочтений пилота. «Есть ‘жесткие’ пилоты, готовые прыгать и ловить машину после каждой кочки ради того, чтобы иметь возможность максимально активно, остро проходить поворот, – рассказывает Геннадий. – А ‘мягкие’ несутся по прямой, как на катере, и так же плавно, как по реке, входят и выходят из поворота». Разумеется, настройки у них кардинально различаются.

Хотя обычным автомобилистам не требуется летать над бездорожьем на максимальной скорости, рекомендуем всем прислушаться к опыту раллистов и быть внимательными к состоянию подвесок своего автомобиля: те доли секунды, за которые гонщики борются ради победы, в экстремальной ситуации могут спасти жизнь людям.

Источник

lifebm › Блог › Понимание работы вашей подвески – ее жесткость.

Хорошая работа подвески вашего автомобиля — понятие субъективное. А еще здесь очень много волшебства. В комбинации эти две вещи никогда не дадут другим понять, какие именно настройки подвески нужны вам. Но это полбеды, дополнительную путаницу вносят еще миллион параметров. Такие как разница дорожного покрытия, погодных условий вождения, стиля езды, снаряженного веса, и ряда других, которые тоже влияют. В результате ваша подвеска будет казаться мягкой, а вашей маме наоборот предельно жесткой.

Развенчание мифа «жестче — лучше».

Жестче пружины — лучше

Итак, приступим. Скоростным маневрам не интересно ваше мнение, ваши ощущения обманчивы, потому отыщите безопасную площадку. Я вам расскажу про отрицательный развал, растянутые шины, уничтоженный дорожный просвет и чрезмерную жесткость пружин — всё это делает машину неуправляемой.

КОЭФФИЦИЕНТ ЖЕСТКОСТИ ПРУЖИН

Размышляя о правильной жесткости вашей подвески первым делом на ум приходят пружины. Именно пружины являются важнейшим ее элементом. Они не дают машине касаться дороги, контролируют сцепление шин с поверхностью при езде по ухабам. Пружины ограничивают крены кузова в поворотах, сопротивляются «приседанию» на заднюю ось при нажатии на газ, не дают сильно клюнуть носом при торможении. От пружин зависит высота автомобиля. Если отбросить прочие составляющие подвески, пружины сильнее всего влияют на управляемость автомобиля. Заметим, что бесконтрольное увеличение жесткости пружин негативно сказывается на множестве других параметров.

Мы не можем говорить о жесткости пружины, не упоминая коэффициент жесткости пружины. По простому это количество веса, который требуется для сжатия пружины на один дюйм. Это универсальная мера, применяется в принципе к различным пружинам — от пружины подвески до клапанной пружины. Пишется примерно так: 500 lbs/in, и чем больше значение, тем жестче.

Линейная и прогрессивная жесткость. Теперь немного усложним теорию. Знайте, что коэффициент жесткости бывает двух типов. Первый тип — линейный, и не имеет значения насколько сжата пружина, какой вес на нее давит или насколько одинаково настроены койловеры. Предсказуемый характер делает такие пружины идеальными для ровных поверхностей вроде подготовленных треков, резко отличающихся от пересеченной местности из-за отсутствия кочек и выбоин. У пружин с прогрессивной жесткостью коэффициент меняет свое значение, например, растет с ростом давления на пружину и зависит от настройки койловеров. Динамически изменяемая жесткость идеальна для уличной езды, ведь поверхность уличных дорог более неравномерна, чем на гоночной трассе. Таким образом, коэффициент жесткости варьируется от жесткого до мягкого в зависимости от того, насколько сильно сжата пружина.

Когда жесткие — совсем жесткие. Независимо от того, какие пружины вы поставите на свою S13, вашей целью, скорее всего, будет уменьшение клиренса, а с ним и центра тяжести. Это значит, что коэффициент сжатия пружин будет жестче, чем задумывал Ниссан, когда подбирал коэффициент жесткости с учетом того, что сберечь амортизаторы от пробоев. Если пружины через чур жесткие, качество езды пострадает. В жертву жесткости будет принесена работа шин на ухабистом неровном покрытии. Также чрезмерно жесткие пружины способствуют избыточной поворачиваемости. Другими словами, при чрезмерной жесткости управляемость станет хуже, чем была прежде.

Есть два неутешительных довода, о которых надо помнить. Первое, пружины с таким же коэффициентом как на Миате вашего товарища полностью бесполезны для вас, ваша машина с такими же пружинами не будет управляться также хорошо. Чтобы это случилось, вам нужна такая же Миата, с такими же настройками подвески на таких же колесах. Но вы-то не этого хотите? Второе, вы не можете сделать машину настолько мягкой, чтобы вашей маме было комфортно и одновременно, чтобы машина делала на гоночном треке то, что вы от нее требуете. Это взаимоисключающие вещи. С пружинами, у которых динамический коэффициент сжатия, вы приблизитесь к этому, но все же это недостижимая фантазия, которая никогда не станет правдой.

Выясним подходящую жесткость пружин. Нет такого магического коэффициента жесткости пружин, который предлагают и могут нахваливать в интернете или журналах. Вскоре вы поймете, что выбрать правильную жесткость пружин для вас, вашего автомобиля в соответствии с вашими планами на определенную езду крайне сложно. Во-первых, призовем на помощь сложную математику, для расчёта частоты подвески, которую вы хотите получить, другим вариантом будет понять, к какой подрессоренной массе должен прийти ваш автомобиль. Для ответа на этот вопрос вы должны знать ход колеса и подрессоренную массу до этих изменений для расчёта хода подвески.

Просто начните пробовать варианты, и по-видимому, придется тестировать их на такой же как у вас машине. Поставьте для эксперимента чуть более жесткие пружины. Этим вы уменьшите ход подвески, увеличите боковое сцепление, сделаете шасси более отзывчивым. Но если вы не собираетесь проводить большую часть времени на треке, большая жесткость принесет больше вреда. На обычных дорогах с переменным покрытием более мягкие или с переменной жесткостью пружины ведут себя лучше. Но помните, что уменьшенный клиренс и мягкие пружины обычно плохой вариант.

Читайте также:  Поломка отопление в автомобиле

Об измерении жесткости пружин

Вы уже знаете, что коэффициент жесткости выражается в количестве фунтов давящих на квадратный дюйм. Но не все коэффициенты на пружинах расчитываются в соотношении фунты на квадратный дюйм. Оказывается, что в остальном мире используется метрическая система, и есть большой шанс, что вам попадутся именно такие. И вы увидите что-то вроде 8kg/mm, и захотите сравнить с чем-то вроде 500 lbs/in.
Знайте, что 1кг/мм эквивалентен 56 lbs/in. Другими словами: кг/мм x 56 = lbs / in. Или поделим lbs/in / 56 = кг.мм.

Стабилизатор поперечной устойчивости и пружины

Стабилизатор поперечной устойчивости сопротивляется крену автомобиля, работает по принципу торсиона на кручение. Он влияет на баланс управляемости, и при правильном применении минимизирует угол хода подвески, что означает, что шины работают эффективнее, а пружины могут правильно отрабатывать нагрузку.

Поворот с большим углом и физика говорят нам, что в этот момент часть веса автомобиля перекидывается в диагональном направлении вызывая эффект скручивания между шасси и подвеской. Стабилизатор противодействует части этой силы. Стабилизатор прикручивается прямо к шасси через серию сайлент-блоков и выходит концами на ступицу. В сборе это работает как большая пружина, которая скручиваясь под нагрузкой сопротивляется крену кузова лучше, чем могли бы пружины подвески. Есть четыре параметра стабилизатора, на которые следует обращать внимание. диаметр, длина, длина рычага, сила металла. Хотите поразить друзей познаниями? Расскажите им, что по отношению к росту диаметра стабилизатора, его жесткость растет четверократно. Например увеличив диаметр стабилизатора вдвое, он станет жестче в восемь раз!

Последствия увеличения жесткости. Каждый раз, когда вы задумываетесь об замене пружин на более жесткие, не забывайте, что правильный стабилизатор поперечной устойчивости справиться с кренами лучше. Все станет очень хорошо на входах и выходах из поворотов, но чрезмерно жестким стабилизатором вы задушите независимую подвеску более чем полностью. На ухабах, выбоинах, неоднородной поверхности это приведет к меньшему пятну контакта колеса с поверхностью и худшей стабильностью, чем даже если бы вы ехали вообще без стабилизатора. Также как и с пружинами, начните экспериментировать со тюнинговыми стабилизаторами, предлагаемыми на рынке запчастей, начните с мягких настроек, и убедитесь, что при установке стабилизатор встает без какого-либо преднатяжения.

Амортизаторы и пружины

Если от пружин зависит ход подвески и смещение веса, то амортизаторы влияют на то, как это быстро происходит. Жесткие амортизаторы замедляют колебания пружины, тормозят ее движение вверх-вниз. Более мягкие хуже затормаживают пружину, часто приводя к обратному — к дополнительным паразитным колебаниям. Амортизатор подвески — комплексный компонент, и его работа характеризуется тремя состояниями:

Мягкий амортизатор — позволяет пружине делать дополнительные колебания перед полной остановкой, в результате шасси подпрыгивает, колеса теряют контакт с дорогой, и не находят его продолжительное время, после того как кочка пройдена. Ваше вождение при этом выглядит нелепо.

Жесткий амортизатор — чрезмерно жесткий амортизатор препятствует полному сжатию пружины.

Критически жесткий амортизатор — позволяет пружине совершить лишь однократный цикл сжатия-разжатия до остановки.

На самом деле ваш амортизатор находится где-то между жестким и очень жестким вариантом. Такой амортизатор будет лучшим на ровной поверхности. Если вы подумываете над регулируемыми койловерами, самое время их использовать. Как и с предыдущими элементами, начинайте с мягких настроек и далее регулируйте в сторону жесткости.

Сайлент-блоки и амортизаторы

В вашей машине используются сайлент-блоки всех сортов. Сейчас мы рассмотрим лишь те, которые крепят элементы подвески к шасси. Для драйва как и с другими элементами — более жесткие лучше. Будьте реалистом, как и в предыдущих случаях подумайте, как повезете потом бабушку к педиатру.

!Но жесткие почти всегда лучше! На примере сайлент-блоков стабилизатор поперечной устойчивости, жесткие позволят получить немедленный отклик от стабилизатора при крене. Берите жесткие, получите опыт жесткой и шумной езды. Полиуритановые лучший выбор между обычными резиновыми, и алюминиевыми, которые рекомендует Хонда. Жесткие сайлент-блоки помогут против кренов при жестком вождении, по сравнению с более податливыми заводскими.

Шасси и амортизаторы

Чем более расхлябанное и гибкое у вас шасси, тем больше оно напоминает большую, жирную и неуправляемую пружину. В разрез со сказанным ранее, вы никогда не сделаете шасси жестким в достаточной мере.

Распорки: Вы можете проварить дополнительные сварные швы по кузову своей Селики для увеличения жесткости, а можете всего лишь поставить в нее распорку. Все эти распорки, поперечные стабилизаторы, каркасы увеличивают жесткость шасси, а это значит, что ваши пружины, амортизаторы, и шины станут работать эффективнее.

Хорошо
Жесткие пружины ограничивают ход подвески ( важно для низких машин)
Жесткие пружины увеличивают температуру шин улучшая сцепление
Жесткие пружины увеличивают чувствительность управления
Жесткие пружины, амортизаторы и сайлент-блоки делают управление четким и послушным
Жесткий стабилизатор уменьшает крены кузова
Жесткий стабилизатор и амортизаторы увеличивают пятно контакта
Жесткие полиуретановые сайлент-блоки служат дольше
Жесткие распорки и каркасы делают шасси долговечнее
Жесткие распорки и каркасы дают возможность элементам подвески работать лучше

Плохо
Жесткие пружины убивают комфортную езду
Жесткие пружины работают хуже обычных на плохих неровных дорогах
Жесткий стабилизатор внутреннее пятно контакта
Жесткий стабилизатор уменьшает сцепление шин на входе-выходе из поворотах
Жесткие сайлент-блоки повышают шумность при езде

Теперь все это установим

Вы знаете, что можете улучшить вашу подвеску. Вы знаете, что надо сделать. Но не уверены, с чего начать. Следуя нижеследующему порядку, вы добьетесь лучших результатов.

Шаг 1: Рассчитайте коэффициент жесткости пружин и подберите соответствующие ему амортизаторы.
Шаг 2: Замеряйте вес автомобиля.
Шаг 3: Поставьте все это, протестируйте и вернитесь к первому и второму шагу, если шины работают плохо.
Шаг 4: По результатам третьего шага подберите стабилизатор поперечной устойчивости.
Шаг 5: Установите стабилизатор, протестируйте, и вернитесь на шаг 4, если вышло так себе.
Шаг 6: Настройте койловеры подобрав необходимую жесткость, если у вас койловеры.
Шаг 7: Проверьте что получилось, вернитесь на шаг 6, если не нравится результат.

ПАМЯТКА УМЕНЬШАЮЩИМ КЛИРЕНС
Вы, конечно, знаете, что есть больше чем один вид койловеров. Лучшие версии имеют регулировку жесткости, и также дают отрегулировать дорожный просвет незатрагивая пружину. А еще необходимо обеспечить предзагрузку пружины. Немного сжав ее, вы не дадите ей выскочить во время сжатия — разжатия. Также проследите за правильной длиной хода амортизатора. Не все койловеры дают это сделать, к сожалению. Недорогие версии сжимают пружину при уменьшении клиренса. Обычно, при использовании пружин с линейным коэффициентом сжатия, в этом нет ничего страшного. Но надо помнить, что поджатая пружина может уменьшить ход подвески более, чем вы планировали. Следите за тем, чтобы это не привело к касанию кузовом земли на сжатии в нижней точке.

Источник

Поделиться с друзьями
Практические советы по железу и огороду