Какова была скорость первого автомобиля

Прямолинейное равноускоренное движение. Ускорение, скорость, перемещение

Решебник к сборнику задач по физике для 7- 9 классов, Перышкин А.В.

1439. Мотоцикл в течение 5 с может увеличить скорость от 0 до 72 км/ч. Определите ускорение мотоцикла.

1440. Определите ускорение лифта в высотном здании, если он увеличивает свою скорость на 3,2 м/с в течение 2 с.

1441. Автомобиль, двигавшийся со скоростью 72 км/ч, равномерно тормозит и через 10 с останавливается. Каково ускорение автомобиля?

1442. Как назвать движения, при которых ускорение постоянно? равно нулю?
Равноускоренное, равномерное.

1443. Санки, скатываясь с горы, движутся равноускоренно и в конце третьей секунды от начала движения имеют скорость 10,8 км/ч. Определите, с каким ускорением движутся санки.

1445. Мотоцикл «Хонда», двигавшийся со скоростью 90 км/ч, начал равномерно тормозить и через 5 с сбросил скорость до 18 км/ч. Каково ускорение мотоцикла?

1446. Объект из состояния покоя начинает двигаться с постоянным ускорением, равным 6 • 10-3 м/с2. Определите скорость через 5 мин после начала движения. Какой путь прошел объект за это время?

1447. Яхту спускают на воду по наклонным стапелям. Первые 80 см она прошла за 10 с. За какое время яхта прошла оставшиеся 30 м, если ее движение оставалось равноускоренным?

1448. Грузовик трогается с места с ускорением 0,6 м/с2. За какое время он пройдет путь в 30 м?

1449. Электричка отходит от станции, двигаясь равноускоренно в течение 1 мин 20 с. Каково ускорение электрички, если за это время ее скорость стала 57,6 км/ч? Какой путь она прошла за указанное время?

1450. Самолет для взлета равноускоренно разгоняется в течение 6 с до скорости 172,8 км/ч. Найдите ускорение самолета. Какое расстояние прошел самолет при разгоне?

1451. Товарный поезд, трогаясь с места, двигался с ускорением 0,5 м/с2 и разогнался до скорости 36 км/ч. Какой путь он при этом прошел?

1452. От станции равноускоренно тронулся скорый поезд и, пройдя 500 м, достиг скорости 72 км/ч. Каково ускорение поезда? Определите время его разгона.

1454. Электричка, шедшая со скоростью 72 км/ч, начала тормозить с постоянным ускорением, равным по модулю 2 м/с2. Через какое время она остановится? Какое расстояние она пройдет до полной остановки?

1455. Городской автобус двигался равномерно со скоростью 6 м/с, а затем начал тормозить с ускорением, по модуля равным 0,6 м/с2. За какое время до остановки и на каком расстоянии от нее надо начать торможение?

1456. Санки скользят по ледяной дорожке с начальной скоростью 8 м/с, и за каждую секунду их скорость уменьшается на 0,25 м/с. Через какое время санки остановятся?

1457. Мотороллер, двигавшийся со скоростью 46,8 км/ч, останавливается при равномерном торможении в течение 2 с. Каково ускорение мотороллера? Каков его тормозной путь?

1458. Теплоход, плывущий со скоростью 32,4 км/ч, стал равномерно тормозить и, подойдя к пристани через 36 с, полностью остановился. Чему равно ускорение теплохода? Какой путь он прошел за время торможения?

1459. Товарняк, проходя мимо шлагбаума, приступил к торможению. Спустя 3 мин он остановился на разъезде. Какова начальная скорость товарняка и модуль его ускорения, если шлагбаум находится на расстоянии 1,8 км от разъезда?

1460. Тормозной путь поезда 150 м, время торможения 30 с. Найдите начальную скорость поезда и его ускорение.

1461. Электричка, двигавшаяся со скоростью 64,8 км/ч, после начала торможения до полной остановки прошла 180 м. Определите ее ускорение и время торможения.

1462. Аэроплан летел равномерно со скоростью 360 км/ч, затем в течение 10 с он двигался равноускоренно: его скорость возрастала на 9 м/с за секунду. Определите, какую скорость приобрел аэроплан. Какое расстояние он пролетел при равноускоренном движении?

1463. Мотоцикл, двигавшийся со скоростью 27 км/ч, начал равномерно ускоряться и через 10 с достиг скорости 63 км/ч. Определите среднюю скорость мотоцикла при равноускоренном движении. Какой путь он проехал за время равноускоренного движения?

1464. Прибор отсчитывает промежутки времени, равные 0,75 с. Шарик скатывается с наклонного желоба в течение трех таких промежутков времени. Скатившись с наклонного желоба, он продолжает двигаться по горизонтальному желобу и проходит в течение первого промежутка времени 45 см. Определите мгновенную скорость шарика в конце наклонного желоба и ускорение шарика при движении по этому желобу.

1465. Отходя от станции, поезд движется равноускоренно с ускорением 5 см/с2. По прошествии какого времени поезд приобретает скорость 36 км/ч?

1466. При отправлении поезда от станции его скорость в течение первых 4 с возросла до 0,2 м/с, в течение следующих 6 с еще на 30 см/с и за следующие 10 с на 1,8 км/ч. Как двигался поезд в течение этих 20 с?

1467. Санки, скатываясь с горы, движутся равноускоренно. На некотором участке пути скорость санок в течение 4 с возросла от 0,8 м/с до 14,4 км/ч. Определите ускорение санок.

1468. Велосипедист начинает двигаться с ускорением 20 см/с2. По истечении какого времени скорость велосипедиста будет равна 7,2 км/ч?

1469. На рисунке 184 дан график скорости некоторого равноускоренного движения. Пользуясь масштабом, данным на рисунке, определите путь, проходимый в этом движении в течение 3,5 с.

1470. На рисунке 185 изображен график скорости некоторого переменного движения. Перечертите рисунок в тетрадь и обозначьте штриховкой площадь, численно равную пути, проходимому в течение 3 с. Чему примерно равен этот путь?

1471. В течение первого промежутка времени от начала равноускоренного движения шарик проходит по желобу 8 см. Какое расстояние пройдет шарик в течение трех таких же промежутков, прошедших от начала движения?

1472. В течение 10 равных промежутков времени от начала движения тело, двигаясь равноускоренно, прошло 75 см. Сколько сантиметров прошло это тело в течение двух первых таких же промежутков времени?

1473. Поезд, отходя от станции, движется равноускоренно и в течение двух первых секунд проходит 12 см. Какое расстояние пройдет поезд в течение 1 мин, считая от начала движения?

1474. Поезд, отходя от станции, движется равноускоренно с ускорением 5 см/с2. Сколько времени потребуется для развития скорости 28,8 км/ч и какое расстояние пройдет поезд за это время?

1475. Паровоз по горизонтальному пути подходит к уклону со скоростью 8 м/с, затем движется вниз по уклону с ускорением 0,2 м/с. Определите длину уклона, если паровоз проходит его за 30 с.

1476. Начальная скорость тележки, движущейся вниз по наклонной доске, равна 10 см/с. Всю длину доски, равную 2 м, тележка прошла в течение 5 сек. Определите ускорение тележки.

1477. Пуля вылетает из ствола ружья со скоростью 800 м/с. Длина ствола 64 см. Предполагая движение пули внутри ствола равноускоренным, определите ускорение и время движения.

1478. Автобус, двигаясь со скоростью 4 м/с, начинает равномерно ускоряться на 1 м/с за секунду. Какой путь пройдет автобус за шестую секунду?

1479. Грузовик, имея некоторую начальную скорость, начал двигаться равноускоренно: за первые 5 с прошел 40 м, а за первые 10 с — 130 м. Найдите начальную скорость грузовика и его ускорение.

1480. Катер, отходя от пристани, начал равноускоренное движение. Пройдя некоторое расстояние, он достиг скорости 20 м/с. Какова была скорость катера в тот момент, когда он проплыл половину этого расстояния?

1481. Лыжник скатывается с горы с нулевой начальной скоростью. На середине горы его скорость была 5 м/с, через 2 с скорость стала 6 м/с. Считая, что она увеличивается равномерно, определите скорость лыжника через 8 с после начала движения.

1482. Автомобиль тронулся с места и двигается равноускоренно. За какую секунду от начала движения путь, пройденный автомобилем, вдвое больше пути, пройденного им в предыдущую секунду?

1483. Найдите путь, пройденный телом за восьмую секунду движения, если оно начинает двигаться равноускоренно без начальной скорости и за пятую секунду проходит путь 27 м.

1484. Провожающие стоят у начала головного вагона поезда. Поезд трогается и движется равноускоренно. За 3 с весь головной вагон проходит мимо провожающих. За какое время пройдет мимо провожающих весь поезд, состоящий из 9 вагонов?

1485. Материальная точка движется по закону x = 0,5t². Какое это движение? Каково ускорение точки? Постройте график зависимости от времени:
а) координаты точки;
б) скорости точки;
в) ускорения.

1486. Поезд остановился через 20 с после начала торможения, пройдя за это время 120 м. Определите первоначальную скорость поезда и ускорение поезда.

1487. Поезд, идущий со скоростью 18 м/с, начал тормозить, и через 15 с остановился. Считая движение поезда при торможении равнозамедленным, определите путь, пройденный поездом за эти 15 с.

1488. Постройте графики скорости равнозамедленного движения для случаев:
1) V0 = 10 м/с, а = — 1,5 м/с2;
2) V0 = 10 м/с; а = — 2 м/с2.
Масштаб в обоих случаях одинаков: 0,5 см – 1 м/с; о,5 см – 1 сек.

1489. Изобразите пройденный путь за время t на графике скорости равнозамедленного движения. Принять V0 = 10 м/с, а = 2 м/с2.

1490. Опишите движения, графики скоростей которых даны на рисунке 186, а и б.
а) движение будет равнозамедленным;
б) сначала тело будет двигаться равноускоренно, затем равномерно. На 3м участке движение будет равнозамедленное.

Источник

задачи на движение
консультация по математике (4 класс)

методическое пособие, дающее комментарии о способах решения различных видов задач на движение в начальной школе

Скачать:

Предварительный просмотр:

Задачи на движение

Скоростью называют расстояние, пройденное телом за единицу времени. Под единицей времени подразумевается 1 час, 1 минута или 1 секунда.

Читайте также:  Пускозарядные устройства для автомобилей профессиональные

Предположим, что двое школьников решили проверить, кто быстрее добежит от двора до спортплощадки. Расстояние от двора до спортплощадки 100 метров. Первый школьник добежал за 25 секунд. Второй за 50 секунд. Кто добежал быстрее?

Чтобы найти скорость, нужно расстояние разделить на время движения. Давайте найдём скорость первого школьника. Для этого разделим 100 метров на время движения первого школьника, то есть на 25 секунд:

Если расстояние дано в метрах, а время движения в секундах, то скорость измеряется в метрах в секунду (м/с). Если расстояние дано в километрах, а время движения в часах, скорость измеряется в километрах в час (км/ч).

У нас расстояние дано в метрах, а время в секундах. Значит скорость измеряется в метрах в секунду (м/с)

Итак, скорость движения первого школьника составляет 4 метра в секунду (м/с).

Теперь найдем скорость движения второго школьника. Для этого разделим расстояние на время движения второго школьника, то есть на 50 секунд:

Значит скорость движения второго школьника составляет 2 метра в секунду (м/с).

Скорость движения первого школьника — 4 (м/с)

Скорость движения второго школьника — 2 (м/с)

Скорость первого школьника больше. Значит он добежал до спортплощадки быстрее. Скорость обозначается латинской буквой v.

Иногда возникает ситуация, когда требуется узнать за какое время тело преодолеет то или иное расстояние.

Например, от дома до спортивной секции 1000 метров. Мы должны доехать туда на велосипеде. Наша скорость будет 500 метров в минуту (500м/мин). За какое время мы доедем до спортивной секции?

Если за одну минуту мы будем проезжать 500 метров, то сколько таких минут с пятью ста метрами будет в 1000 метрах? Очевидно, что надо разделить 1000 метров на то расстояние, которое мы будем проезжать за одну минуту, то есть на 500 метров. Тогда мы получим время, за которое мы доедем до спортивной секции:

Взаимосвязь скорости, времени, расстояния

Если известны скорость и время движения, то можно найти расстояние. Оно равно скорости, умноженной на время: s = v × t

Например, мы вышли из дома и направились в магазин. Мы дошли до магазина за 10 минут. Наша скорость была 50 метров в минуту. Зная свою скорость и время, мы можем найти расстояние.

Если за одну минуту мы прошли 50 метров, то сколько таких пятьдесят метров мы пройдем за 10 минут? Очевидно, что умножив 50 метров на 10, мы определим расстояние от дома до магазина.

v = 50 (м/мин) t = 10 минут s = v × t = 50 × 10 = 500 (метров до магазина)

Если известно время и расстояние, то можно найти скорость: v = s : t

Например, расстояние от дома до школы 900 метров. Школьник дошел до этой школы за 10 минут. Какова была его скорость?

Скорость движения школьника это расстояние, которое он проходит за одну минуту. Если за 10 минут он преодолел 900 метров, то какое расстояние он преодолевал за одну минуту?

Чтобы ответить на этот, нужно разделить расстояние на время движения школьника:

s = 900 метров t = 10 минут v = s : t = 900 : 10 = 90 (м/мин)

Если известна скорость и расстояние, то можно найти время: t = s : v

Например, от дома до спортивной секции 500 метров. Мы должны дойти до неё пешком. Наша скорость будет 100 метров в минуту (100 м/мин). За какое время мы дойдем до спортивной секции?

Если за одну минуту мы будем проходить 100 метров, то сколько таких минут со ста метрами будет в 500 метрах?

Чтобы ответить на этот вопрос нужно 500 метров разделить на расстояние, которое мы будем проходить за одну минуту, то есть на 100. Тогда мы получим время, за которое мы дойдем до спортивной секции:

s = 500 метров v = 100 (м/мин) t = s : v = 500 : 100 = 5 (минут до спортивной секции)

Задача на нахождение расстояния/скорости/времени

Задача 1. Автомобиль двигается со скоростью 80 км/ч. Сколько километров он проедет за 3 часа?

Если за один час автомобиль проезжает 80 километров, то за 3 часа он проедет в три раза больше. Чтобы найти расстояние, нужно скорость автомобиля (80км/ч) умножить на время движения (3ч)

Ответ : за 3 часа автомобиль проедет 240 километров.

Задача 2. На автомобиле за 3 часа проехали 180 км с одной и той же скоростью. Чему равна скорость автомобиля?

Скорость — это расстояние, пройденное телом за единицу времени. Под единицей подразумевается 1 час, 1 минута или 1 секунда.

Если за 3 часа автомобиль проехал 180 километров с одной и той же скоростью, то разделив 180 км на 3 часа мы определим расстояние, которое проезжал автомобиль за один час. А это есть скорость движения. Чтобы определить скорость, нужно пройденное расстояние разделить на время движения:

Ответ : скорость автомобиля составляет 60 км/ч

Задача 3. За 2 часа автомобиль проехал 96 км, а велосипедист за 6 часов проехал 72 км. Во сколько раз автомобиль двигался быстрее велосипедиста?

Определим скорость движения автомобиля. Для этого разделим пройденное им расстояние (96км) на время его движения (2ч)

Определим скорость движения велосипедиста. Для этого разделим пройденное им расстояние (72км) на время его движения (6ч)

Узнаем во сколько раз автомобиль двигался быстрее велосипедиста. Для этого найдем отношение 48 к 12

Ответ : автомобиль двигался быстрее велосипедиста в 4 раза.

Если за 1 час вертолет преодолевал 120 километров, то узнав сколько таких 120 километров в 600 километрах, мы определим сколько времени он был в полете. Чтобы найти время, нужно пройденное расстояние разделить на скорость движения

Ответ : вертолет был в пути 5 часов.

Если за 1 час вертолет преодолевал 160 км, то за 6 часов, он преодолел в шесть раз больше. Чтобы определить расстояние, нужно скорость движения умножить на время

Ответ : за 6 часов вертолет преодолел 960 км.

Определим сколько километров автомобиль проехал за первые 9 часов. Для этого умножим скорость с которой он ехал первые девять часов (55км/ч) на 9

Определим сколько осталось проехать. Для этого вычтем из общего расстояния (723км) расстояние, пройденное за первые 9 часов движения

Эти 228 километров автомобиль проехал за оставшиеся 4 часа. Чтобы определить скорость автомобиля в оставшееся время, нужно 228 километров разделить на 4 часа:

Ответ : скорость автомобиля в оставшееся время составляла 57 км/ч

Скорость сближения — это расстояние, пройденное двумя объектами навстречу друг другу за единицу времени.

Например, если из двух пунктов навстречу друг другу отправятся два пешехода, причем скорость первого будет 100 м/м, а второго — 105 м/м, то скорость сближения будет составлять 100+105, то есть 205 м/м. Значит каждую минуту расстояние между пешеходами будет уменьшаться на 205 метров

Чтобы найти скорость сближения, нужно сложить скорости объектов.

Предположим, что пешеходы встретились через три минуты после начала движения. Зная, что они встретились через три минуты, мы можем узнать расстояние между двумя пунктами.

Каждую минуту пешеходы преодолевали расстояние равное двухсот пяти метрам. Через 3 минуты они встретились. Значит умножив скорость сближения на время движения, мы сможем определить расстояние между двумя пунктами:

205 × 3 = 615 метров

Можно и по другому определить расстояние между пунктами. Для этого следует найти расстояние, которое прошел каждый пешеход до встречи.

Так, первый пешеход шел со скоростью 100 метров в минуту. Встреча состоялась через три минуты, значит за 3 минуты он прошел 100×3 метров

100 × 3 = 300 метров

А второй пешеход шел со скоростью 105 метров в минуту. За три минуты он прошел 105×3 метров

105 × 3 = 315 метров

Теперь можно сложить полученные результаты и таким образом определить расстояние между двумя пунктами:

300 м + 315 м = 615 м

Задача 1. Из двух населенных пунктов навстречу друг другу выехали одновременно два велосипедиста. Скорость первого велосипедиста 10 км/ч, а скорость второго — 12 км/ч. Через 2 часа они встретились. Определите расстояние между населенными пунктами

Найдем скорость сближения велосипедистов

10 км/ч + 12 км/ч = 22 км/ч

Определим расстояние между населенными пунктами. Для этого скорость сближения умножим на время движения

Решим эту задачу вторым способом. Для этого найдем расстояния, пройденные велосипедистами и сложим полученные результаты.

Найдем расстояние, пройденное первым велосипедистом:

Найдем расстояние, пройденное вторым велосипедистом:

Сложим полученные расстояния:

20 км + 24 км = 44 км

Ответ : расстояние между населенными пунктами составляет 44 км.

Найдем скорость сближения велосипедистов:

14 км/ч + 16 км/ч = 30 км/ч

За один час расстояние между велосипедистами уменьшается на 30 километров. Чтобы определить через сколько часов они встретятся, нужно расстояние между населенными пунктами разделить на скорость сближения:

Значит велосипедисты встретились через два часа

Ответ : велосипедисты встретились через 2 часа.

Определим расстояние, пройденное первым велосипедистом. Как и второй велосипедист в пути он провел 2 часа. Умножив скорость первого велосипедиста на 2 часа, мы сможем узнать сколько километров он прошел до встречи

За два часа первый велосипедист прошел 24 км. За один час он прошел 24:2, то есть 12 км. Изобразим это графически

Вычтем из общего расстояния (56 км) расстояние, пройденное первым велосипедистом (24 км). Так мы определим сколько километров прошел второй велосипедист:

56 км − 24 км = 32 км

Второй велосипедист, как и первый провел в пути 2 часа. Если мы разделим пройденное им расстояние на 2 часа, то узнаем с какой скоростью он двигался:

Значит скорость второго велосипедиста составляет 16 км/ч.

Ответ: скорость второго велосипедиста составляет 16 км/ч.

Скорость удаления — это расстояние, которое увеличивается за единицу времени между двумя объектами, двигающимися в противоположных направлениях.

Читайте также:  Можно оставить авто номер на другую автомобиль

Например, если два пешехода отправятся из одного и того же пункта в противоположных направлениях, причем скорость первого будет 4 км/ч, а скорость второго 6 км/ч, то скорость удаления будет составлять 4+6, то есть 10 км/ч. Каждый час расстояние между двумя пешеходами будет увеличиться на 10 километров.

Чтобы найти скорость удаления, нужно сложить скорости объектов.

Так, за первый час расстояние между пешеходами будет составлять 10 километров. На следующем рисунке можно увидеть, как это происходит

Видно, что первый пешеход прошел свои 4 километра за первый час. Второй пешеход также прошел свои 6 километров за первый час. Итого за первый час расстояние между ними стало 4+6, то есть 10 километров.

Через два часа расстояние между пешеходами будет составлять 10×2, то есть 20 километров. На следующем рисунке можно увидеть, как это происходит:

Задача 1. От одной станции отправились одновременно в противоположных направлениях товарный поезд и пассажирский экспресс. Скорость товарного поезда составляла 40 км/ч, скорость экспресса 180 км/ч. Какое расстояние будет между этими поездами через 2 часа?

Определим скорость удаления поездов. Для этого сложим их скорости:

Получили скорость удаления поездов равную 220 км/ч. Данная скорость показывает, что за час расстояние между поездами будет увеличиваться на 220 километров. Чтобы узнать какое расстояние будет между поездами через два часа, нужно 220 умножить на 2

Ответ : через 2 часа расстояние будет между поездами будет 440 километров.

Задача 2. Из пункта одновременно в противоположных направлениях отправились велосипедист и мотоциклист. Скорость велосипедиста 16 км/ч, а скорость мотоциклиста — 40 км/ч. Какое расстояние будет между велосипедистом и мотоциклистом через 2 часа?

Определим скорость удаления велосипедиста и мотоциклиста. Для этого сложим их скорости:

16 км/ч + 40 км/ч = 56 км/ч

Определим расстояние, которое будет между велосипедистом и мотоциклистом через 2 часа. Для этого скорость удаления (56км/ч) умножим на 2 часа

Ответ : через 2 часа расстояние между велосипедистом и мотоциклистом будет 112 км.

Определим скорость удаления велосипедиста и мотоциклиста. Для этого сложим их скорости:

10 км/ч + 30 км/ч = 40 км/ч

За один час расстояние между велосипедистом и мотоциклистом увеличивается на 40 километров. Чтобы узнать через сколько часов расстояние между ними будет 80 км, нужно определить сколько раз 80 км содержит по 40 км

Ответ : через 2 часа после начала движения, между велосипедистом и мотоциклистом будет 80 километров.

Определим расстояние, пройденное велосипедистом за 2 часа. Для этого умножим его скорость (15 км/ч) на 2 часа

На рисунке видно, что велосипедист прошел по 15 километров в каждом часе. Итого за два часа он прошел 30 километров.

Вычтем из общего расстояния (90 км) расстояние, пройденное велосипедистом (30 км). Так мы определим сколько километров прошел мотоциклист:

90 км − 30 км = 60 км

Мотоциклист за два часа прошел 60 километров. Если мы разделим пройденное им расстояние на 2 часа, то узнаем с какой скоростью он двигался:

Значит скорость мотоциклиста составляла 30 км/ч.

Ответ : скорость мотоциклиста составляла 30 км/ч.

Задача на движение объектов в одном направлении

В первом случае мы находили скорость сближения — в ситуации, когда два объекта двигались навстречу друг другу. За единицу времени расстояние между объектами уменьшалось на определенное расстояние

Во втором случае мы находили скорость удаления — в ситуации, когда два объекта двигались в противоположных направлениях. За единицу времени расстояние между объектами увеличивалось на определенное расстояние

Но объекты также могут двигаться в одном направлении, причем с различной скоростью. Например, из одного пункта одновременно могут выехать велосипедист и мотоциклист, причем скорость велосипедиста может составлять 20 километров в час, а скорость мотоциклиста — 40 километров в час

На рисунке видно, что мотоциклист впереди велосипедиста на двадцать километров. Связано это с тем, что в час он преодолевает на 20 километров больше, чем велосипедист. Поэтому каждый час расстояние между велосипедистом и мотоциклистом будет увеличиваться на двадцать километров.

В данном случае 20 км/ч являются скоростью удаления мотоциклиста от велосипедиста.

Через два часа расстояние, пройденное велосипедистом будет составлять 40 км. Мотоциклист же проедет 80 км, отдалившись от велосипедиста еще на двадцать километров — итого расстояние между ними составит 40 километров

Чтобы найти скорость удаления при движении в одном направлении, нужно из большей скорости вычесть меньшую скорость.

В приведенном выше примере, скорость удаления составляет 20 км/ч. Её можно найти путем вычитания скорости велосипедиста из скорости мотоциклиста. Скорость велосипедиста составляла 20 км/ч, а скорость мотоциклиста — 40 км/ч. Скорость мотоциклиста больше, поэтому из 40 вычитаем 20

40 км/ч − 20 км/ч = 20 км/ч

Найдем скорость удаления. Для этого из большей скорости вычтем меньшую

120 км/ч − 80 км/ч = 40 км/ч

Каждый час легковой автомобиль отдаляется от автобуса на 40 километров. За один час расстояние между автомобилем и автобусом будет 40 км. За 2 часа в два раза больше:

Ответ : через один час расстояние между автомобилем и автобусом будет 40 км, через два часа — 80 км.

Рассмотрим ситуацию в которой объекты начали свое движение из разных пунктов, но в одном направлении.

Пусть имеется дом, школа и аттракцион. От дома до школы 700 метров

Два пешехода отправились в аттракцион в одно и то же время. Причем первый пешеход отправился в аттракцион от дома со скоростью 100 метров в минуту, а второй пешеход отправился в аттракцион от школы со скоростью 80 метров в минуту. Какое расстояние будет между пешеходами через 2 минуты? Через сколько минут после начала движения первый пешеход догонит второго?

Ответим на первый вопрос задачи — какое расстояние будет между пешеходами через 2 минуты?

Определим расстояние, пройденное первым пешеходом за 2 минуты. Он двигался со скоростью 100 метров в минуту. За две минуты он пройдет в два раза больше, то есть 200 метров

100 × 2 = 200 метров

Определим расстояние, пройденное вторым пешеходом за 2 минуты. Он двигался со скоростью 80 метров в минуту. За две минуты он пройдет в два раза больше, то есть 160 метров

Теперь нужно найти расстояние между пешеходами

Чтобы найти расстояние между пешеходами, можно к расстоянию от дома до школы (700м) прибавить расстояние, пройденное вторым пешеходом (160м) и из полученного результата вычесть расстояние, пройденное первым пешеходом (200м)

700 м + 160 м = 860 м

860 м − 200 м = 660 м

Либо из расстояния от дома до школы (700м) вычесть расстояние, пройденное первым пешеходом (200м), и к полученному результату прибавить расстояние, пройденное вторым пешеходом (160м)

700 м − 200 м = 500 м

500 м + 160 м = 660 м

Таким образом, через две минуты расстояние между пешеходами будет составлять 660 метров

Попробуем ответить на следующий вопрос задачи: через сколько минут после начала движения первый пешеход догонит второго?

Давайте посмотрим какой была ситуация в самом начале пути — когда пешеходы еще не начали своё движение

Как видно на рисунке, расстояние между пешеходами в начале пути составляло 700 метров. Но уже через минуту после начала движения расстояние между ними будет составлять 680 метров, поскольку первый пешеход двигается на 20 метров быстрее второго:

700 м + 80 м − 100 м = 780 м − 100 м = 680 м

Через две минуты после начала движения, расстояние уменьшится еще на 20 метров и будет составлять 660 метров. Это был наш ответ на первый вопрос задачи:

700 м + 160 м − 200м = 860 м − 200 м = 660 м

Через три минуты расстояние уменьшится еще на 20 метров и будет уже составлять 640 метров:

700 м + 240 м − 300м = 940 м − 300 м = 640 м

Мы видим, что с каждой минутой первый пешеход будет приближаться ко второму на 20 метров, и в конце концов догонит его. Можно сказать, что скорость равная двадцати метрам в минуту является скоростью сближения пешеходов. Правила нахождения скорости сближения и удаления при движении в одном направлении идентичны.

Чтобы найти скорость сближения при движении в одном направлении, нужно из большей скорости вычесть меньшую.

А раз изначальные 700 метров с каждой минутой уменьшаются на одинаковые 20 метров, то мы можем узнать сколько раз 700 метров содержат по 20 метров, тем самым определяя через сколько минут первый пешеход догонит второго

Значит через 35 минут после начала движения первый пешеход догонит второго. Для интереса узнаем сколько метров прошел к этому времени каждый пешеход. Первый двигался со скоростью 100 метров в минуту. За 35 минут он прошел в 35 раз больше

Второй шел со скоростью 80 метров в минуту. За 35 минут он прошел в 35 раз больше

Первый прошел 3500 метров, а второй 2800 метров. Первый прошел на 700 метров больше, поскольку он шел от дома. Если вычесть эти 700 метров из 3500, то мы получим 2800 м

Рассмотрим ситуацию, в которой объекты движутся в одном направлении, но один из объектов начал своё движение раньше другого.

Пусть имеется дом и школа. Первый пешеход отправился в школу со скоростью 80 метров в минуту. Через 5 минут вслед за ним в школу отправился второй пешеход со скоростью 100 метров в минуту. Через сколько минут второй пешеход догонит первого?

Второй пешеход начал свое движение через 5 минут. К этому времени первый пешеход уже отдалился от него на какое-то расстояние. Найдём это расстояние. Для этого умножим его скорость (80 м/м) на 5 минут

Читайте также:  Плотность автомобилей на 1000 жителей

Первый пешеход отдалился от второго на 400 метров. Поэтому в момент, когда второй пешеход начнет свое движение, между ними будут эти самые 400 метров.

Но второй пешеход двигается со скоростью 100 метров в минуту. То есть, двигается на 20 метров быстрее первого пешехода, а значит с каждой минутой расстояние между ними будет уменьшаться на 20 метров. Наша задача узнать через сколько минут это произойдет.

Например, уже через минуту расстояние между пешеходами будет составлять 380 метров. Первый пешеход к своим 400 метрам пройдет еще 80 метров, а второй пройдет 100 метров

Принцип здесь такой-же, как и в предыдущей задаче. Расстояние между пешеходами в момент движения второго пешехода необходимо разделить на скорость сближения пешеходов. Скорость сближения в данном случае равна двадцати метрам. Поэтому, чтобы определить через сколько минут второй пешеход догонит первого, нужно 400 метров разделить на 20

Значит через 20 минут второй пешеход догонит первого.

Найдем скорость сближения

35 км/ч − 15 км/ч = 20 км/ч

Определим через часов автобус догонит велосипедиста

Ответ : автобус догонит велосипедиста через 2 часа.

Задача на движение по реке

Суда двигаются по реке с различной скоростью. При этом они могут двигаться, как по течению реки, так и против течения. В зависимости от того, как они двигаются (по или против течения), скорость будет меняться.

Предположим, что скорость реки составляет 3 км/ч. Если спустить лодку на реку, то река унесет лодку со скоростью 3 км/ч.

Если спустить лодку на стоячую воду, в которой отсутствует течение, то и лодка будет стоять. Скорость движения лодки в этом случае будет равна нулю.

Например, если моторная лодка плывет по стоячей воде со скоростью 40 км/ч, то говорят, что собственная скорость моторной лодки составляет 40 км/ч.

Как определить скорость судна?

Если судно плывет по течению реки, то к собственной скорости судна нужно прибавить скорость течения реки.

30 км/ч + 2 км/ч = 32 км/ч

Течение реки можно сказать помогает моторной лодке дополнительной скоростью равной двум километрам в час.

Если судно плывет против течения реки, то из собственной скорости судна нужно вычесть скорость течения реки.

30 км/ч − 2 км/ч = 28 км/ч

Течение реки в этом случае препятствует моторной лодке свободно двигаться вперед, снижая её скорость на два километра в час.

Если катер будет двигаться по течения реки, то скорость его движения составит 40 + 3, то есть 43 км/ч.

Если катер будет двигаться против течения реки, то скорость его движения составит 40 − 3, то есть 37 км/ч.

Собственная скорость теплохода составляет 23 км/ч. Если теплоход будет двигаться по течению реки, то скорость его движения составит 23 + 3, то есть 26 км/ч. За три часа он пройдет в три раза больше

Если теплоход будет двигаться против течения реки, то скорость его движения составит 23 − 3, то есть 20 км/ч. За три часа он пройдет в три раза больше

Скорость яхты не менялась. Узнаем на какой путь она затратила больше времени: на путь от А до В или на путь от В до А. Тот путь, который затратил больше времени будет тем путем, течение реки которого шло против яхты

3 часа 20 минут больше, чем 2 часа 50 минут. Это значит, что течение реки снизило скорость яхты и это отразилось на времени пути. 3 часа 20 минут это время, затраченное на путь от от А до В. Значит река течет от пункта B к пункту А

Требуется найти время за которое теплоход пройдет 204 километра против течения реки. Собственная скорость теплохода составляет 15 км/ч. Двигается он против течения реки, поэтому нужно определить его скорость при таком движении.

Чтобы определить скорость против течения реки, нужно из собственной скорости теплохода (15 км/ч) вычесть скорость движения реки. В условии сказано, что скорость течения реки в 5 раз меньше собственной скорости теплохода, поэтому сначала определим скорость течения реки. Для этого уменьшим 15 км/ч в пять раз

Скорость течения реки составляет 3 км/ч. Вычтем эту скорость из скорости движения теплохода

15 км/ч − 3 км/ч = 12 км/ч

Теперь определим время за которое теплоход пройдет 204 км при скорости 12 км/ч. В час теплоход проходит 12 километров. Чтобы узнать за сколько часов он пройдет 204 километра, нужно определить сколько раз 204 километра содержит по 12 километров

Ответ : теплоход пройдет 204 километра за 17 часов

Узнаем с какой скоростью лодка двигалась по реке. Для этого пройденное расстояние (102км) разделим на время движения (6ч)

Определим собственную скорость лодки. Для этого из скорости по которой она двигалась по реке (17 км/ч) вычтем скорость течения реки (4 км/ч)

Узнаем с какой скоростью лодка двигалась по реке. Для этого пройденное расстояние (110км) разделим на время движения (5ч)

Определим собственную скорость лодки. В условии сказано, что она двигалась против течения реки. Скорость течения реки составляла 4 км/ч. Это значит, что собственная скорость лодки была уменьшена на 4. Наша задача прибавить эти 4 км/ч и узнать собственную скорость лодки

Ответ : собственная скорость лодки составляет 26 км/ч

Найдем собственную скорость лодки. В условии сказано, что она на 8 км/ч больше скорости течения. Поэтому для определения собственной скорости лодки, к скорости течения (2 км/ч) прибавим еще 8 км/ч

2 км/ч + 8 км/ч = 10 км/ч

Лодка движется против течения реки, поэтому из собственной скорости лодки (10 км/ч) вычтем скорость движения реки (2 км/ч)

10 км/ч − 2 км/ч = 8 км/ч

Узнаем за какое время лодка пройдет 56 км. Для этого расстояние (56км) разделим на скорость движения лодки:

Ответ : при движении против течения реки лодка пройдет 56 км за 7 часов

Задачи для самостоятельного решения

Задача 1. Сколько времени потребуется пешеходу, чтобы пройти 20 км, если скорость его равна 5 км/ч?

Задача 2. Из пункта А в пункт В велосипедист ехал 5 часов со скоростью 16 км/ч, а обратно он ехал по тому же пути со скоростью 10 км/ч. Сколько времени потратил велосипедист на обратный путь?

Задача 3. Велосипедист ехал 6 ч с некоторой скоростью. После того как он проехал ещё 11 км с той же скоростью, его путь стал равным 83 км. С какой скоростью ехал велосипедист?

Задача 4. Двигаясь против течения реки, расстояние в 72 км теплоход проходит за 4ч, а плот такое же расстояние проплывает за 36 ч. За сколько часов теплоход проплывет расстояние 110 км, если будет плыть по течению реки?

Задача 5. Из одного пункта одновременно в противоположных направлениях выехали два велосипедиста. Один из них ехал со скоростью 11 км/ч, а второй со скоростью 13 км/ч. Какое расстояние будет между ними через 4 часа?

Задача 6. От двух пристаней одновременно навстречу друг другу отошли два теплохода, и через 6 часов они встретились. Какое расстояние до встречи прошел каждый теплоход и какое расстояние между пристанями, если один теплоход шел со скоростью 21 км/ч, а другой — со скоростью 24 км/ч?

Задача 7. Одновременно из Москвы и Уфы вышли два поезда. Через 16 часов они встретились. Московский поезд шел со скоростью 51 км/ч. С какой скоростью шел поезд, вышедший из Уфы, если расстояние между Москвой и Уфой 1520 км? Какое расстояние было между поездами через 5 часов после их встречи?

Задача 8. Из одного пункта одновременно в противоположных направлениях отправились два автобуса. Скорость одного автобуса 48 км/ч, другого на 6 км/ч больше. Через сколько часов расстояние между автобусами будет равно 510 км?

Задача 9. Расстояние от Ростова-на-Дону до Москвы 1230 км. Из Москвы и Ростова навстречу друг другу вышли два поезда. Поезд из Москвы идет со скоростью 63 км/ч, а скорость ростовского поезда составляет 20/21 скорости московского поезда. На каком расстоянии от Ростова встретятся поезда?

Задача 10. От двух пристаней, расстояние между которыми 75 км, навстречу друг другу одновременно отошли две моторные лодки. Одна шла со скоростью 16 км/ч, а скорость другой составляла 75% скорости первой лодки. Какое расстояние будет между лодками через 2 ч?

Задача 11. Легковая машина, скорость которой 62 км/ч, догоняет грузовую машину, скорость которой 47 км/ч. Через сколько времени и на каком расстоянии от начала движения легковая автомашина догонит грузовую, если первоначальное расстояние между ними было 60 км?

Задача 12. Из одного пункта в одном направлении одновременно выезжали два мотоциклиста. Скорость одного 35 км/ч, а скорость другого составляла 80% скорости первого мотоциклиста. Какое расстояние будет между ними через 5 часов?

Задача 13. Мотоциклист, скорость которого 43 км/ч, догоняет велосипедиста, скорость которого 13 км/ч. Через сколько часов мотоциклист догонит велосипедиста, если первоначальное расстояние между ними было 120 км?

Задача 14. Велосипедист, скорость которого 12 км/ч, догоняет велосипедиста, скорость которого составляет 75 % его скорости. Через 6 часов второй велосипедист догнал велосипедиста, ехавшего первым. Какое расстояние было между велосипедистами первоначально?

Задача 15. Автомобиль и автобус выехали одновременно из одного пункта в одном направлении. Скорость автомобиля 53 км/ч, скорость автобуса 41 км/ч. Через сколько часов после выезда автомобиль будет впереди автобуса на 48 км?

Источник

Поделиться с друзьями
Практические советы по железу и огороду
Adblock
detector