Каково назначение двигателя на автомобиле

Каково назначение двигателя на автомобиле

1. Назначение двигателей

Двигатель — это машина, преобразующая какой-либо вид энергии в механическую работу. На большинстве современных автомобилей установлены тепловые поршневые двигатели внутрен­него сгорания (ДВС), в которых тепло­та, выделяющаяся при сгорании топлива в цилиндрах, преобразуется в механическую работу.

Классификация двигателей

ДВС применяются на тракторах, автомобилях и других машинах они классифицируются по следующим признакам:

по способу смесеобразования различают двигатели с внешним смесеобразованием (карбюраторные и газовые), у которых горючая смесь приготовляется вне цилиндров, и двигатели с внутренним смесеобразованием (дизели), у которых рабочая смесь образуется внутри цилиндров;

по способу выполнения рабочего цикла двигатели подразделяются на двух- и четырехтактные;

по способу воспламенения рабочей смеси — с принудительным воспламене­нием от электрической искры (бензиновые, газовые и др.) и с воспламенением от сжатия, т. е. с самовоспламенением (дизели);

по способу наполнения цилиндров свежим зарядом — без наддува, т. е. со свободным впуском (наполнение осуществляется за счет перепада давления в цилиндрах и окружающей среде, воз­никающего при движении поршня) и с наддувом (наполнение происходит под давлением, создаваемым компрессором);

по способу охлаждения различают двигатели с жидкостным и воздушным охлаждением;

по виду применяемого топлива двигатели подразделяются на бензиновые (карбюраторные, газовые), дизельные и многотопливные, а также других (альтернативных) видах топлива (спирте, водороде и т. п.);

по числу цилиндров двигатели подразделяются на одно-, двух- и многоцилиндровые;

по расположению цилиндров различают двигатели с вертикальным или наклонным расположением цилиндров в один ряд и V-образные двигатели с расположением цилиндров под углом (при расположении цилиндров под углом 180° двигатель называют оппозитным, или двигателем с противолежащими цилиндрами), Х- и звездообразные (четырех-, пяти-, шестицилиндровые и т.д.).

Общее устройство одноцилиндрового четырехтактного двигателя

1 — зубчатые колеса; 2 — распределительный вал; 3 — толкатели; 4 — штанги; 5 — поршень; 6 — головка цилиндров; 7 — глушитель; 8 — коромысла; 9 — клапанные пружины; 10 — карбюратор; 11 — впускной клапан; 12 — свеча зажи­гания; 13 — выпускной клапан; 14 — поршневые кольца; 15 — рубашка (по­лость) охлаждающей жидкости; 16 — поршневой палец; 17 — цилиндр; 18 — шатун; 19 — маховик; 20 — картер двигателя; 21 — коленчатый вал; 22 — поддон.

Источник

Двигатель автомобиля: назначение и виды силовых агрегатов современных транспортных средств

Двигатель, пожалуй, можно назвать самой важной частью автомобиля. Ведь без двигателя автомобиль не сдвинется с места, но и без колес тоже далеко не уедешь, поэтому не будем делить автомобильные системы по важности, а просто попробуем узнать чуточку больше, об автомобильном двигателе.

Двигатель – это силовая установка, источник энергии автомобиля. Он используется для того чтобы машина могла выполнять свою основную функцию – перевозку грузов и пассажиров, но кроме этого, энергия, вырабатываемая двигателем, используется для обеспечения функционирования всех вспомогательных систем, например для работы кондиционера.

Впрочем, все вспомогательные системы, как правило, работают от электричества, вырабатываемого генератором или забираемой от аккумуляторов. А вот генератор как раз приводится в действие с помощью двигателя, передавая ему механическую энергию вращения вала.

Для обеспечения движения автомобиля так же используется механическая энергия вала двигателя, которая передается от двигателя на колеса через трансмиссию.

То есть, по сути, двигатель нужен для того, чтобы преобразовать какой-либо вид энергии в механическую энергию вращения вала, которая через систему механических связей передается на колеса, заставляя автомобиль двигаться.

Двигатель внутреннего сгорания

Когда мы говорим о двигателе автомобиля, то чаще всего представляем себе двигатель внутреннего сгорания, в качестве топлива для которого используется бензин, дизельное топливо, газ, а в последнее время пробуют и водород.

В двигателе внутреннего сгорания, как несложно догадаться, происходит преобразование энергии, выделяемой при сгорании легковоспламеняющихся веществ в механическую энергию. Конструкции двигателей внутреннего сгорания могут отличаться, бывают поршневые двигатели, роторные и газотурбинные.

Но принцип их работы остается неизменным. Энергия, выделяемая при сгорании топлива, в конечном итоге преобразуется в механическую энергию вращения вала двигателя и через систему механических связей передается на колеса, заставляя их вращаться.

Основной недостаток двигателей внутреннего сгорания их неэкологичность. При сжигании топлива выделяется много вредных веществ. Исключение в этом составляет водород, продуктом горения которого является обыкновенная вода, но проблема с его использованием на сегодняшний день заключается в дороговизне, хотя вероятно, что в будущем это будет основной вид топлива.

Но двигатели внутреннего сгорания – не единственные автомобильные двигатели.

Электро-двигатель

Существуют машины, которые используют в качестве исходной энергии – электричество. Наиболее популярный и близкий к автомобилю вид транспорта, работающий на электричестве – это всем известный троллейбус.

Но полноценным автомобилем его не назовешь, поскольку двигаться троллейбус может только лишь вдоль натянутых проводов, от которых он запитывается электричеством.

Но вы наверняка слышали о машинах, которые называются электромобилями. Электромобили – это автомобили, в которых в качестве силового агрегата используется электродвигатель.

Электродвигатель, как вы понимаете, работает от электрической энергии, которую он получает, как правило, от аккумуляторных батарей.

Читайте также:  Подобрать по цвету кузова автомобиля

Электромобили, по сравнению с автомобилями, использующими двигатели внутреннего сгорания, имеют массу преимуществ.

Они экологичны, практически бесшумны (что не всегда плюс), быстро набирают скорость, им не нужна коробка скоростей можно даже обойтись без трансмиссии, если поставить двигатели на каждое из колес. То есть такие автомобили могли бы быть намного дешевле, чем автомобили с ДВС, если бы стали массовыми.

Но есть два существенных момента, которые очень сильно ограничивают применение электродвигателей на современных автомобилях. До сих пор не придумали аккумуляторов, которые бы могли запасти в себе достаточное количество электрической энергии.

То есть запас хода электромобиля сегодня ограничен несколькими десятками километров. Если не включать фары, магнитолу, кондиционер, то можно и до сотни километров проехать, но все равно это очень мало. Примерно в 5-6 раз меньше, чем на одной заправке бензином. Впрочем, над этим разработчики постоянно работают и возможно, что когда вы читаете эти строки, уже существует электромобиль с запасом хода более 500 км.

Но даже малый запас хода был бы не так страшен, если бы не время, требуемое на перезарядку аккумуляторов. Если заправка бензином, дизтопливом или газом занимает 5-10 минут, то аккумуляторы придется заряжать часов 12, а то и сутки.

Поэтому, пока электромобили могут использоваться лишь для непродолжительных поездок по городу, после чего всю ночь на зарядке.

Гибридные силовые агрегаты

Но преимущество электродвигателей над ДВС настолько велико, что желание их использовать хотя бы частично привело к появлению гибридных силовых установок, которые сегодня достаточно активно используются на автомобилях.

Гибридные силовые установки – это объединенные на одном автомобиле двигатель внутреннего сгорания и электродвигатель (как правило, их 4, по одному на каждое колесо). Такие автомобили называют гибридными.

Существуют три схемы гибридных установок.

В первой энергия ДВС используется исключительно для выработки электрической энергии при помощи генератора. А уже от генератора энергия передается на зарядку аккумуляторов и на электродвигатели, обеспечивающие вращение колес.

Но более популярна другая схема. Во второй схеме привод на колеса осуществляется как от ДВС, так и от электродвигателей. ДВС и электродвигатели могут использоваться как самостоятельно, так и вместе.

Третий вариант – это сочетание первого и второго.

Вот такие они двигатели автомобиля, разнообразные и неоднозначные. Более подробно свойства, принцип работы, детали мы разберем в будущих публикациях.

Источник

Назначение и виды автомобильных двигателей

Двигатель автомобиля представляет собой совокупность механизмов и систем, преобразующих тепловую энергию сгорающего в его цилиндрах топлива в механическую. На современных автомобилях наибольшее распространение получили поршневые двигатели внутреннего сгорания, в которых расширяющиеся при сгорании топлива газы воздействуют на движущиеся в их цилиндрах поршни. Бензиновые двигатели работают на легком жидком топливе — бензине, который получают из нефти. Дизельные двигатели работают на тяжелом жидком топливе — дизельном, получаемом также из нефти. Из указанных двигателей наиболее мощными являются бензиновые, наиболее экономичными и экологичными — дизели, имеющие более высокий коэффициент полезного действия. Так, при равных условиях расход топлива у дизелей на 25 …30% меньше, чем у бензиновых двигателей.

У двигателей с внешним смесеобразованием горючая смесь готовится вне цилиндров, в специальном приборе — карбюраторе (карбюраторные двигатели) или во впускном трубопроводе (двигатели с впрыском бензина) и поступает в цилиндры в готовом виде. У двигателей с внутренним смесеобразованием (дизели, двигатели с непосредственным впрыском бензина) приготовление горючей смеси производится непосредственно в цилиндрах путем впрыска в них топлива. В двигателях без наддува наполнение цилиндров осуществляется за счет вакуума, создаваемого в цилиндрах при движений поршней из верхнего крайнего положения в нижнее. В двигателях с наддувом горючая смесь поступает в цилиндры под давлением, которое создается компрессором. Принудительное воспламенение горючей смеси от электрической искры, возникающей в свечах зажигания, производится в бензиновых двигателях, а воспламенение от сжатия (самовоспламенение) — в дизелях.

Основные типы двигателей

Применяемые на автомобилях двигатели подразделяются на типы по различным признакам

Основные определения и параметры двигателя

Рассмотрим основные параметры двигателя, связанные с его работой Верхняя мертвая точка (ВМТ) — крайнее верхнее положение поршня. В этой точке поршень наиболее удален от оси коленчатого вала. Нижняя мертвая точка (НМТ) — крайнее нижнее положение поршня. Поршень наиболее приближен к оси коленчатого вала. В мертвых точках поршень меняет направление движения, и его скорость равна нулю. Ход поршня (S) — расстояние между мертвыми точками, проходимое поршнем в течение одного такта рабочего цикла двигателя. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота). Такт — часть рабочего цикла двигателя, происходящего при движении поршня из одного крайнего положения в другое. Рабочий объем цилиндра (Vk) — объем, освобождаемый поршнем при его перемещении от ВМТ до НМТ. Объем камеры сгорания (Vc) — объем пространства над поршнем, находящимся в ВМТ. Полный объем цилиндра (Va) — объем пространства над поршнем, находящимся в НМТ:

Рабочий объем (литраж) двигателя — сумма рабочих объемов всех цилиндров двигателя, выраженная в литрах (см 3 ). Степень сжатия (s) — отношение полного объема цилиндра к объему камеры сгорания, т.е. s = Va/Vc

Степень сжатия показывает, во сколько раз сжимается смесь в цилиндре двигателя при ходе поршня из НМТ в ВМТ. При повышении степени сжатия увеличивается мощность двигателя и улучшается его экономичность. Однако повышение степени сжатия ограничено качеством применяемого топлива и увеличивает нагрузки на детали двигателя. Степень сжатия для бензиновых двигателей современных легковых автомобилей составляет 8 — 10, а для дизелей 15 — 22. При таких степенях сжатия в бензиновых двигателях не происходит самовоспламенение смеси, а в дизелях, наоборот, самовоспламенение смеси обеспечивается. Ход S поршня и диаметр D цилиндра определяют размеры двигателя. Если отношение S/D Порядок работы двигателя

Читайте также:  Номерная рамка для автомобиля самбо

Порядком работы двигателя называется последовательность чередования рабочих ходов по цилиндрам двигателя. Для равномерной и плавной работы двигателя рабочие ходы и другие одноименные такты должны чередоваться в определенной последовательности в его цилиндрах. При этом чередование должно происходить через равные углы поворота коленчатого вала двигателя, величина которых зависит от числа цилиндров двигателя. В четырехтактном двигателе рабочий процесс совершается за два оборота коленчатого вала, т.е. за поворот вала на 720°. Число рабочих ходов равно числу цилиндров двигателя. Их чередование для четырех-, шести- и восьмицилиндровых двигателей будет происходить соответственно через 180, 120 и 90° поворота коленчатого вала.

Порядок работы двигателя во многом зависит от типа двигателя и числа цилиндров. Так, например, у коленчатого вала рядного четырехцилиндрового двигателя,

Внешняя скоростная характеристика двигателя

Внешней скоростной характеристикой двигателя называется зависимость эффективной мощности Ne и крутящего момента Ме от частоты вращения коленчатого вала при полной подаче топлива. Эффективной называется мощность, развиваемая на коленчатом валу двигателя. Внешняя скоростная характеристика определяет возможности двигателя и характеризует его работу. По внешней скоростной характеристике определяют техническое состояние двигателя. Она позволяет сравнивать различные типы двигателей и судить о совершенстве новых двигателей.

На внешней скоростной характеристике (рис.6) выделяют следующие точки, определяющие характерные режимы работы двигателя:

Nmax – максимальная (номинальная) мощность;

nN – частота вращения коленчатого вала при максимальной мощности;

Мmax – максимальный крутящий момент;

nM – частота вращения коленчатого вала при максимальном крутящем моменте;

nmin – минимальная частота вращения коленчатого вала, при которой двигатель работает устойчиво при полной подаче топлива;

nmax – максимальная частота вращения.

Из характеристики видно, что двигатель развивает максимальный момент при меньшей частоте вращения, чем максимальная мощность.

Это необходимо для автоматического приспосабливания двигателя к возрастающему сопротивлению движения. Например, автомобиль двигается по горизонтальной дороге при максимальной мощности двигателя и начинает преодолевать подъем. Сопротивление дороги возрастает, скорость автомобиля и частота вращения коленчатого вала уменьшаются, а крутящий момент увеличивается, обеспечивая возрастание тяговой силы на ведущих колесах автомобиля. Чем больше увеличение крутящего момента при уменьшении частоты вращения, тем выше приспосабливаемость двигателя и тем меньше вероятность его остановки. Для бензиновых двигателей увеличение (запас) крутящего момента достигает 30 %, а у дизелей — 15 %.

В эксплуатации большую часть времени двигатели работают в диапазоне частот вращения nM—nN, при которых развиваются соответственно максимальные крутящий момент и эффективная мощность. Внешнюю скоростную характеристику двигателя строят по данным результатов его испытаний на специальном стенде. При испытаниях с двигателя снимают часть элементов систем охлаждения, питания и др. (вентилятор, радиатор, глушитель и др.), без которых обеспечивается его работа на стенде. Полученные при испытаниях мощность и крутящий момент приводят к нормальным условиям, соответствующим давлению окружающего воздуха 1 атм и температуре 15 °С. Эти мощность и момент называются стендовыми, и они указываются в технических характеристиках, инструкциях, каталогах, проспектах и т.п. В действительности мощность и момент двигателя, установленного на автомобиле, на 5… 10 % меньше, чем стендовые. Это связано с установкой на двигатель элементов, которые были сняты при испытаниях (насос гидроусилителя, компрессор и др.). Кроме того, давление и температура при работе двигателя на автомобиле отличаются от нормальных.

При проектировании нового двигателя внешнюю скоростную характеристику получают расчетным способом, используя для этого специальные формулы. Однако действительную внешнюю скоростную характеристику получают только после изготовления и испытания двигателя.

Источник

Принцип работы и устройство двигателя

Двигатель внутреннего сгорания называется так потому что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, образующихся в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя. Выделяемая в этом процессе энергия преобразуется в механическую работу.


В процессе эволюции ДВС выделились несколько типов двигателей, их классификация и общее устройство:

Далее рассматриваются только поршневые двигатели, так как только они получили широкое распространение в автомобильной промышленности. Основные причины тому: надежность, стоимость производства и обслуживания, высокая производительность.

Устройство двигателя внутреннего сгорания

Первые поршневые ДВС имели лишь один цилиндр небольшого диаметра. В дальнейшем, для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. “Сердце” современного автомобиля может иметь до 12 цилиндров.

Наиболее простым является двигатель с рядным расположением цилиндров. Однако, с увеличением количества цилиндров растет и линейный размер двигателя. Поэтому появился более компактный вариант расположения — V-образный. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Обычно используется для 6-цилиндровых двигателей и более.

Одна из основных частей двигателя — цилиндр (6), в котором находится поршень (7), соединенный через шатун (9) с коленчатым валом (12). Прямолинейное движение поршня в цилиндре вверх и вниз шатун и кривошип преобразуют во вращательное движение коленчатого вала.

Читайте также:  Праймер для наклеек автомобиля

На конце вала закреплен маховик (10), назначение которого придавать равномерность вращению вала при работе двигателя. Сверху цилиндр плотно закрыт головкой блока цилиндров (ГБЦ), в которой находятся впускной (5) и выпускной (4) клапаны, закрывающие соответствующие каналы.

Клапаны открываются под действием кулачков распределительного вала (14) через передаточные механизмы (15). Распределительный вал приводится во вращение шестернями (13) от коленчатого вала.
Для уменьшения потерь на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой. Для этого в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Топливо воспламеняется в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение.

Принцип работы двигателя

Из-за низкой производительности и высокого расхода топлива 2-тактных двигателей практически все современные двигатели производят с 4-тактными циклами работы:

Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла.

Во время второго такта поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени работы двигателя.

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600О С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Системы двигателя

Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Источник

Поделиться с друзьями
Практические советы по железу и огороду
Adblock
detector