Карбюраторы автомобилей ока djvu

Содержание
  1. Лада Ока Модный Гольфик › Бортжурнал › дааз 1111 vs солекс 21083 часть 1
  2. Лада Ока 2002, двигатель бензиновый 0.7 л., 33 л. с., передний привод, механическая коробка передач — наблюдение
  3. Машины в продаже
  4. Лада 1111 Ока, 2000
  5. Лада 1111 Ока, 1999
  6. Лада 1111 Ока, 2004
  7. Лада 1111 Ока, 2002
  8. Комментарии 33
  9. КАМАЗ Ока #ОКАКАКОКА › Бортжурнал › солекс на оку
  10. Карбюратор «Ока»
  11. Конструкция и составные части
  12. Крышка
  13. Основной корпус
  14. Корпус заслонок
  15. Конструктивные особенности
  16. Принцип работы
  17. Обслуживание, регулировка
  18. Лада Ока Модный Гольфик › Бортжурнал › особенности работы карбюратора Солекс на Оке (моей)
  19. Карбюратор ДААЗ-1111
  20. ОБЩИЕ СВЕДЕНИЯ О КАРБЮРАТОРАХ ДААЗ1111
  21. УСТРОЙСТВО КАРБЮРАТОРА
  22. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕГУЛИРОВКА КАРБЮРАТОРОВ
  23. ПОИСК И УСТРАНЕНИЕ ПРИЧИН НЕИСПРАВНОСТЕЙ КАРБЮРАТОРОВ
  24. ИСПОЛЬЗОВАНИЕ ГАЗОАНАЛИЗАТОРОВ ДЛЯ ДИАГНОСТИКИ СИСТЕМ ПИТАНИЯ И ЗАЖИГАНИЯ

Лада Ока Модный Гольфик › Бортжурнал › дааз 1111 vs солекс 21083 часть 1

Как я уже анонсировал, на меня свалился новенький оковский карбюратор дааз 1111. Так как я не снимая свой солекс 21083 с машины так и не смог настроить пусковые зазоры каждое утро для аккумулятора было мучение. Однако мой 6 с половиной летний уже сто раз посаженый и столько же раз перекипевший повышенным зарядом аккумулятор «Зверь» будучи в очередной раз посаженным, но отстоявшимся один час дома уже бодро крутил снова и все таки кое как машина заводилась. Вобщем мне все это действие надоело и я перекинул солекс на дааз.
В гараже у меня валяется много всяких карбюраторов. Я их собираю помаленьку для создания совершенного карбюратора ))) Но об этом потом. Разумеется среди них есть и старый родной карбюратор. А еще есть вот такой интересный карбюратор от уаза 2,5 литра (справа).

Лада Ока 2002, двигатель бензиновый 0.7 л., 33 л. с., передний привод, механическая коробка передач — наблюдение

Машины в продаже

Лада 1111 Ока, 2000

Лада 1111 Ока, 1999

Лада 1111 Ока, 2004

Лада 1111 Ока, 2002

Комментарии 33

Сам-то не запутался где солекс, где ДААЗ. Ни хрена не понял, что хотел сказать.

Иногда думаю такой карб поставить на ваз 2106 с мотором 1.6)))

У меня с завода на 11113 стоял карб, который кушал бенз х2.
По трасе при 90 км/ч улетало в трубу около 8 литров на сотню.Свечи чёрные, выхлопная тоже.

Но, мысль о том, что до этого была 1111, которая при тех же условиях кушала 4-4,5л/100 км, не давала покоя.

Пошёл в магазин и купил новый карб ДААЗ 1111.

Поставил, сразу отметил, что расход на сотню по трассе стал в районе 5 литров!
Меня это устроило и вопрос был закрыт.

С пол года назад, на холостых начала брыкаться.
Оказалось умер клапан хх.
Открыл карб, прочистил за одно, продул и назад поставил.

Недавно на трассе, двс начал дёргаться и троить, чихать и тд.
Думал бенз плохой, дотянул до азс, плеснул 10 литров, всё, поехала.

Дома, разобрав карб, оказалось, что открутился топл. жиклёр 2 камеры и бенз прямиком тёк, от чего и были перебои.

А жиклёр открутился, потому, что при затягивании, почти слизало грани под отвёртку и я видимо не затянул его в прошлый раз!

Такой жиклёр обратно ставить не хотел и тупо поехал за ремкомплектом.Там лежат 2 на 95.

Задался вопросом, почему у меня стояли 92.5-95 и 190-95.
Тогда как на других ресурсах инфа по 11113 такая:
1к 2к
топл____95______102.5
возд____180_____85.

Сейчас поставил временно оба топливных 95 и вот, что заметил.
Появилась динамика, пропал провал, при переключениях на повышенную.Двигатель поехал ощутимо бодрее, ровнее работает на хх(не трясёт теперь его).

В общем, как я понял, в ремкомплектах на ОКУ лежат стандартные:
95-95,190-95.
Меня это не устраивает, буду собирать, где то искать, с чего то подбирать нужные жиклёры.

Источник

КАМАЗ Ока #ОКАКАКОКА › Бортжурнал › солекс на оку

замена карбюратора ДААЗ на карбюратор Солекс на оке не несёт за собой каких-либо мудрствований и извращений
дело в том что крепления к коллектору у этих карбюраторов идентичны, впрочем как и у большинства изделий из Тольяти)))
для установки солекса понадобится:
— сам карбюратор
— две прокладки (одна с двумя дырками, а вторая с одной)
— термоизоляционная проставка
— хомуты
— топливный шланг
— болтик

для начала снимаем старый карбюратор, открутив все хомуты, и отсоединив шланги (если машина довольно старая, то могут понадобиться резиновые шланги под отвод картерных газов, со временем они очень хорошо ссыхаются и вместо того чтобы слезть со штуцера, просто отламываются — если есть подозрения, лучше запастись ими)

далее берём солекс
на приводе его заслонок может быть пластмассовая фишка для крепления тросика, её нужно снять. она крепится как раз на шарик, к которому присоединяется тяга от педали, поэтому с приводом ничего придумывать не придётся, максимум отрегулировать длину тяги.

далее займёмся «бутербродом»
на коллектор одеваем асбестовую прокладку с одной большой дыркой, на неё проставку, а сверху прокладку с двумя дырками.
можно ставить карбюратор

для удобства я снял верхнюю крышку с карбюратора, чтобы можно было затянуть гайки на шпильках головкой на 13, и не извращаться с ключами.
после установки нижней части можно сразу закрепить шланги вентиляции и октан-корректора.

далее ставим обратно крышку (возможно понадобится прокладка, но у меня всё норм и со старой было), подключаем провод ЭМК, «подсос» (или привод воздушной заслонки пускового устройства, кому как нравится:) ) и начинается самое интересное)

топливопровод)))
первое что нужно сделать — заглушить обратку (тонкий штуцер) коротким шлангом с болтом на конце, и естесственно захомутать)))

далее можно поменять основной штуцер в другую сторону, а можно нет, всё зависит от длины шланга))) и кому как удобнее) и уже на него крепим основной шланг от насоса.

вот собственно и всё. остаётся отрегулировать хх

P.S.
ВОЗДУХАН
тут как говорится работает только плод вашей фантазии, проще всего приобрести опять же восьмёрошную кастрюлю, я же пассатижами разжал родную, до нужных размеров, промазал термостойким герметиком и закрепил на 2 оставшиеся гайки, держится норм)))

обсуждаем, господа)
мог что-то по мелочи забыть, спрашивайте)

Источник

Карбюратор «Ока»

Силовые агрегаты автомобиля «Ока» 1111 и 11113 комплектовались карбюраторной системой питания. Сейчас такая система является устаревшей и не используется, но на момент начала производства являлась приоритетной, инжекторы на отечественных авто тех годов выпуска не использовались.

Основным элементом такой системы питания является карбюратор. ВАЗ-11113 и ее «младший» вариант получили свой отдельный карбюратор производства ДААЗ. Этот узел не получилось просто позаимствовать от других моделей ввиду того, что моторы «Ока» — 2-цилиндровые, и эксплуатационные показатели карбюратора того же ВАЗ-2108 просто не соответствовали требуемым.

Но конструкторы взяли ДААЗ-2108-1107010 от «Восьмерки» (он же – «Солекс») за базу и на основе его создали ДААЗ-1111-1107010, который и установили на «Оку».

Примечательно, что при создании карбюратора «Ока» использовали не только «Солекс», некоторые конструктивные решения были позаимствованы также и у карбюраторов «Вебер» и «Озон».

Карбюратор ВАЗ-11113 похож по общему принципу построения с «Солекс» от ВАЗ-2108, но есть и некоторые особенности, к примеру, в узле «Ока» на корпусе есть две пробки, демонтировав которые можно добраться до топливных жиклеров, не разбирая сам карбюратор.

Конструкция и составные части

Карбюратор «Ока» — двухкамерный, с электромагнитным клапаном холостого хода (ХХ). Этот клапан является единственной электронной составляющей.

Карбюратор «Ока» включает в себя 3 основных части:

Между собой указанные компоненты соединяются болтами.

Крышка

В крышке размещены штуцеры для подсоединения магистралей подачи топлива от насоса и слива излишков (обратка). Для дополнительно очистки подающегося бензина, под штуцером подачи установлен небольшой сетчатый фильтр.

В один из колодцев крышки установлена воздушная заслонка, ось которой тросиком соединяется с рукояткой принудительного обогащения топливовоздушной смеси, устанавливаемой в салоне (так называемый «ручной подсос»).

Также на крышке располагаются шпильки для фиксации корпуса фильтра.

Основной корпус

Главная рабочая часть карбюратора.

В ней располагается:

Эта составляющая предназначена для дозирования количества топлива в зависимости от режима работы мотора и подмешивания бензина в воздух, обеспечения стабильного функционирования силовой установки на ХХ.

Корпус заслонок

В корпус дросселей установлены две заслонки (1-й и 2-й камер). Конструктивно сделано так, что трос, идущий от педали газа, соединяется с рычагом оси только заслонки первичной камеры. Воздействие на вторую заслонку осуществляется посредством рычагов, соединяющих между собой обе заслонки.

Из-за такого устройства, заслонки открываются асинхронно, то есть, сначала срабатывает дроссель 1-й камеры, который тянет за собой заслонку 2-й камеры. Это позволяет при малых нагрузках на двигатель как бы отключать 2-ю камеру для экономии топлива.

Регулировка карбюратора Ока осуществляется винтами качества и количества.

Конструктивные особенности

Несмотря на то, что за основу при создании взяли «Солекс» от «Восьмерки», у карбюратора «Оки» есть некоторые конструктивные особенности:

Что касается отличий карбюраторов моделей «Ока» 1111 и 11113, то они сводятся только к разной тарировке жиклеров.

На модели 1111 используются топливные жиклеры с тарировкой 95 (на 1-й и 2-й камерах) и воздушные – 190 (1-я камера) и 95 (2-я).

У версии 11113 установлены 95-е топливные жиклеры (на обеих камерах) и 170-й (1-я), 85 (2-я камера).

Поскольку размерные параметры жиклеров «Солекс» идентичны и отличаются только сечения, на «Ока» возможна модернизация карбюратора для повышения мощности путем установки жиклеров больших сечений (но при этом вырастет и потребление бензина).

Принцип работы

Карбюратор ВАЗ-11113 работает по тому же принципу, что и «Солекс». Суть функционирования очень проста – в поплавочной камере постоянно находится бензин, который за счет разрежения через ГДС подмешивается к воздушному потоку, образуя вместе с ним топливовоздушную смесь.

Работает все так – водитель посредством педали газа воздействует на дроссели, тем самым изменяя скорость потока всасываемого цилиндрами воздуха.

Воздушный поток, проходя через диффузоры создает разрежение в распылителях, из-за чего происходит всасывание топлива, находящегося в поплавковой камере. Всасываемый потоком бензин проходит через топливный жиклер, который благодаря малому сечению отверстия разбивает жидкость на мелкие капли, из-за чего обеспечивается легкость испаряются. И уже в испаренном виде бензин через распылитель подмешивается в воздух.

Двигатель работает в разных режимах, под которые ГДС не всегда успевает подстроиться (выдать нужно количество бензина), из-за чего могут возникать провалы и рывки.

Чтобы устранить такие проблемы, в конструкцию карбюратора включены экономайзер и ускорительный насос. Первый обеспечивает увеличенное количество бензина при высоких нагрузках мотора. Делается это за счет подачи части топлива в распылитель в обход топливного жиклера.

Ускорительный насос отвечает за подачу необходимого количества бензина при резком открывании дросселей. Делает он это путем впрыскивания топлива через дополнительный распылитель. То есть, при резком нажатии на газ, бензин в воздушный поток подается не только через ГТС, а и распылитель ускорителя.

Работы мотора на ХХ обеспечивается системой холостого хода. Состоит она из каналов, через которые топливо подается под нижние заслонки. Воздух же, нужный для работы мотора при закрытых дросселях поступает через отверстия, проделанные в заслонках. Поэтому даже при полностью отпущенном акселераторе, в камеры сгорания подается топливовоздушная смесь, необходимая для работы мотора на минимально возможных оборотах.

Обслуживание, регулировка

Благодаря простой конструкции и минимального количества электроники, карбюратор на «Ока» является достаточно надежным узлом. Но для поддержания его в полностью работоспособном состоянии, требуется периодическое обслуживание.

Признаками того, что нужен ремонт карбюратора «Ока» являются такие симптомы:

Поскольку такие же симптомы имеют проблемы с системой зажигания, то не лишним будет проверить ее работоспособность вместе с системой питания.

Основным недостатком карбюратора является наличие большого количества каналов и компонентов с отверстиями малого сечения, которые со временем забиваются сором, в них откладываются смолистые отложения, содержащиеся в топливе.

Обслуживание карбюратора сводится к полной разборке, промывке и продувке каналов, жиклеров, трубок. При этом, для прочистки не рекомендуется использовать металлические предметы (иголки, шило), чтобы не повлиять на сечения отверстий, хотя допускается применение для прочистки деревянных предметов (зубочисток).

При несильных загрязнения также помогают спец. средства для чистки карбюраторов, использование которых не требует демонтажа и разборки узла – промывка осуществляется на установленном карбюраторе и заведенном двигателе.

Из возможных поломок узла можно отметить:

Настроек у ДААЗ «Ока» не так уж и много – регулируется уровень в поплавковой камере и обороты ХХ.

Первая операция выполняется так:

Регулировка оборотов ХХ выполняется винтом качества. Работы следует выполнять на прогретом моторе и с включенными электроприборами (чтобы создать нагрузку). Суть регулировки сводится к тому, что нужно вращая винт добиться оборотов мотора на уровне 800-1000 об/мин.

Источник

Лада Ока Модный Гольфик › Бортжурнал › особенности работы карбюратора Солекс на Оке (моей)

Много букв. Но интересно
Новый когда-то карбюратор Солекс стоит уже давно. Было такое, что начитавшись «умных» рекомендаций «специалистов» кинулся все подбирать, подгибать, поменять. В итоге все равно я вернулся на заводской вариант карбюратора 21083 от двигателя 1,5.
Меня все устраивает. Расход по трассе около 5. Расход по городу… 10. Был недавно замерен. Я с лета снова на Оке, но как было 3 года назад уже не помню. Кто-то мне скажет, что мол жиклеры надо менять, что от 1,5 не годится. ОК, ткну вас пальцем на расход по трассе. Он в норме, стало быть жиклеры нужные и вобще они не причем. Но я городскому расходу не удивлен. Просто нужно знать мой режим езды. Я не отказываю себе в удовольствии быстро разогнаться, поездки мои короткие от 2 до 5 км и частые, каждый раз авто прогреваю. Учитывая что на прогрев с 0 гр до 55 тратится примерно 100 грамм бензина, то в день я трачу поллитра только на прогрев.
И вздумалось мне маленько поэкономить на бензине. Хорошо, убираем быстрый разгон. 9 литров. Вот щас не понял? Под «маленько» я расчитывал хотябы на 2 литра. А надо сказать меня уже давно терзало любопытное стрекотание карбюратора в разных режимах работы двигателя. Этот звук был именно из карбюратора, это точно не детонация или что-либо еще. Опытным путем было установлено что стрекотание по всем признакам соответсвует началу работы экономайзера мощностных режимов карбюратора. То есть стрекот начинается в то время когда в коллекторе падает разрежение. Это бывает при разгоне и особенно выражено при наборе скорости на передаче с низких оборотов, то есть когда передача не соответствует нужной, например разгон на 4 передаче с 40 км/ч. Вы можете проверить сами. Равномерно езжайте на 2 или 3 передаче просто поддерживая скорость и потихоньку начинайте поддавать газу очень плавно. В определенный момент вы почувствуете хорошее ускорение и возможно услышите это стрекотание.
Для тех кто не в курсе ЭМР такое устройство в карбюраторе солекс, которое позволяет дополнительно обогощать обедненную смесь, когда это требуется двигателю. Двигатель это дает понять карбюратору падением разряжения в коллекторе. Разряжение падает и «отпускает» диафрагму экономайзера, которая открывает клапан подачи топлива.

Ну а почему стрекотание? Пульсации «окушные» видимо этот клапан дергают туда сюда, вот толкатель и долбит по шарику. Дык вот благодаря стрекотанию стало удобно определять, когда у меня включается в работу ЭМР. И оказалось, что включается он ну очень рано. Когда я спокойно могу набирать скорость и без него он уже стрекочет. Динамика конечно супер, что и поддталкивало меня видимо пришпоривать окуху на разгонах. Но расход сами знаете. А вот на трассе разгон не нужен, пилишь себе равномерно, вот и расход поэтому выходит такой себе в норме.
Вот я и призадумался, а чего это он вдруг? Попутно с похолоданием ниже 0 стало трудновато заводится. Опять же опытным путем установлено что в момент пуска с вытянутым подсосом смесь излишне переобогащена. Когда удавалось заводится обороты за только 2-3 сек выростали с 1000 до 2500. Думал я на этими двумя проблемами. Проблемы в пневматических устройствах по сути, ЭМР и пусковое устройство. Ну точно. Разрежение в коллекторе у оки и у зубила отличается. Стало быть и работа этих устройств будет отличаться. Значит надо изменить параметры при которых разрежение будет преодолевать воздействие возвратной пружины. То есть нужна пружина помягче. Я перебрал все свои старые карбюраторы на предмет пружинок. Нашел помягче, но оставил ее прозапас, а свою пружину из ЭМР я просто подрезал. Тут главное не перестараться, иначе пружина просто не будет открывать клапан. Но все удалось! Теперь ЭМР стал срабатывать позже. А на место пружинки ПУ я поставил пружинку из ЭМР. Она точно мягче. Вот картинку спер из инета

А теперь результаты. Я не поверил, но… 7,5! При тех же условиях и среднем режиме езды. Эксперимент не считается, пока он не будет повторен. И я повторил. 7,1! Те же условия, но поэкономнее езда. Я уверен летом будет 6-6,5 что в общем то норма для оки.
Все замечательно, кто-то может сказать, что для большей экономности можно вобще заглушить ЭМР нафиг. Был уже такой эксперимент у меня 3 года назад. Мне вобще не понравилось и расхода меньше не стало.
ЭМР вобще очень нужная штука. На родном ококарбе кстати его нет. Он позволяет не только бодрее ехать когда нужно, но и в целом экономить.
Объясняю. Возьмем простой карбюратор без ЭМР, да хоть окушный например. Топливный жиклер расчитан будет на средние режимы работы двигателя, когда при равномерном движении жиклера будет многовато, при тапке в пол его будет не хватать, а в серединке самый раз. Сколько там? Ну 95 пусть будет. Если поставить жиклер 92,5, то при равномерном движении по трассе например будет очень экономно, ну по городу еще туда сюда пойдет, а про динамику конечно можно забыть. Поставим 97,5 Машина очень динамична и расход не мал почти на всех режимах. То есть понимаете что лучший вариант это 95 А теперь воткнем к этому карбюратору ЭМР. Что делает ЭМР? Обогащает, когда нужно. Тапок в пол например или как у меня часто бывает не переключаюсь на нижнюю передачу и втапливаю дальше на высшей. ЭМР позволяет брать с низких оборотов. А в других случаях нужна экономность, для этого поставим жиклер 92,5. То есть будет экономичное авто на 92,5 жиклере способное пульнуть при необходимости. Профит!
С ПУ тоже сработало. Но почти. Теперь я отчетливо стал ощущать что воздушная заслонка стала приоткрываться, когда нужно. Но необходимо подстроить пусковые зазоры.
По карбу кстати есть много идей, хочется доработать его до современных (ну почти) карбов типа японского Микуни. Как только время на него найдется обязательно займусь. Для этого на запчасти уже приобретен карбюратор Озон. Но перед его дербаном хочу провести еще эксперимент Ока на Озоне ))

Источник

Карбюратор ДААЗ-1111

С сайта oka.newmail.ru

ОБЩИЕ СВЕДЕНИЯ О КАРБЮРАТОРАХ ДААЗ1111

Карбюраторы ДМЗ серии 1111 начали производить на Димитровградском автоагрегатном заводе с момента начала выпуска на Волжском автозаводе переднеприводных автомобилей ВАЗ-1111.

Параметры карбюраторов серии 1111 приведены в табл. 1.

Конструкция карбюратора типа 11113-1107010 аналогична карбюратору 1111-1107010, однако он имеет другие тарировочные параметры главных топливного и воздушного жиклеров второй камеры.

Читайте также:  Сроки то автомобиля киа оптима

При необходимости некоторые детали других карбюраторов ДМЗ могут быть использованы для карбюраторов модели 1111.

УСТРОЙСТВО КАРБЮРАТОРА

Карбюратор ДААЗ 1111, как и любые другие карбюраторы, представляет собой устройство для точного дозирования топлива в потоке воздуха, образования из топлива и воздуха рабочей смеси и регулирования ее подачи в цилиндры двигателя.

Карбюратор имеет два расположенных рядом вертикальных канала для прохода воздуха, в нижней части каждого из которых установлена поворотная дроссельная заслонка. Каждый из каналов называют камерой карбюратора. Поскольку таких каналов-камер два, а привод дроссельных заслонок устроен так, что, по мере нажатия на педаль акселератора, сначала открывается одна, а затем другая заслонка, карбюраторы этого типа называют двухкамерными, с последовательным.

Таблица 1. Параметры дозирующих систем карбюратора ДААЗ-1111-1107010

Параметры Камера
первая вторая
Диаметр диффузора, мм 20 25
Диаметр смесительной камеры, мм 28 36
Тарировка главного топливного жиклера 95 95(102,5)*
Тарировка главного воздушного жиклера 170 85
Тарировка топливного жиклера жиклера холостого хода и диаметр переходной системы второй камеры 41 0,50
Диаметр воздушных жиклеров холостого хода и переходной системы второй камеры, мм 1,5 0,7
Диаметр топливного жиклера эконостата, мм 0,95
Диаметр распылителей ускорительного насоса, мм 0,40 0,35
Подача топлива ускорительным насосом, см3 за 10 ходов 8,0+2,0
Пусковые зазоры заслонок, мм
воздушной
дроссельной
2,2+0,2
0,7-0,8

Крышка крепится к корпусу пятью винтами через тонкую картонную прокладку. На рис. 10-16 показаны виды на детали карбюратора.

В карбюраторе имеются следующие системы, устройства и механизмы:
поплавковый механизм;
топливодозирующие системы первой и второй камер:
а) главные дозирующие системы первой и второй камер;
б) система холостого хода;
в) переходная система второй камеры;
г) эконостат;
д) инерционное обогатительное устройство;
е)ускорительный насос;
пусковое устройство;
система принудительной вентиляции картера;
механизм управления дроссельными заслонками.

Поплавковый механизм(рис.17) служит для поддержания постоянного уровня топлива в поплавковой камере, необходимого для нормальной работы карбюратора. Уровень топлива автоматически устанавливается за счет изменения проходного сечения отверстия игольчатого клапана 11, перекрываемого запорной иглой 6 с демпфирующим подпружиненным шариком 4 на хвостовике, которая перемещается язычком 5 кронштейна-держателя пластмассового поплавка. Когда топлива в камере мало, поплавок опускается вниз, и язычок опускает иглу, открывая отверстие игольчатого клапана и обеспечивая поступление большего количества топлива. По мере заполнения камеры поплавок поднимается вверх,язычок поднимает иглу, перекрывая подачу топлива.

Одновременно с изменением расхода топлива через игольчатый клапан поплавковой камеры автоматически (за счет особой конструкции привода) изменяется подача топлива со стороны насоса, что исключает чрезмерное повышение давления топлива на входе в карбюратор. Строго говоря, уровень топлива в поплавковой камере не сохраняется постоянным на различных режимах работы двигателя. На холостом ходу он максимальный и уменьшается на несколько миллиметров при полной мощности двигателя, когда для обеспечения большего расхода топлива поплавок смещает вниз запорную иглу, увеличивая пропускную способность отверстия игольчатого клапана, что происходит только при понижении уровня топлива. Это не оказывает никакого отрицательного влияния на работу карбюратора, так как учтено при подборе регулировок дозирующих систем.

Конструкция поплавкового механизма карбюратора серии 1111 отличается от конструкции аналогичного устройства других карбюраторов ДААЗ прежде всего установкой поплавка: он расположен не на крышке карбюратора, а непосредственно в поплавковой камере. Поэтому сняв крышку карбюратора, мы тем самым нарушаем взаимодействие поплавка с запорной иглой и не можем визуально отрегулировать его положение, определяющее уровень топлива, как это делается на других карбюраторах ДААЗ. В связи с этим методика регулировки уровня топлива на этом карбюраторе отличается от применяющейся для карбюраторов 2101-2108.

Поплавок крепится на оси 8, свободно вставляемой в пазы 9 корпуса карбюратора и фиксируемой сверху фигурной пружиной-держателем 10, которая фиксируется плоскостью крышки 16.

Все современные автомобильные карбюраторы, в том числе и карбюратор ДААЗ-1111, имеют так называемую сбалансированную поплавковую камеру, полость которой над уровнем топлива изолируется от непосредственной связи с атмосферой и сообщается каналами лишь с пространством над горловиной карбюратора, т.е. с полостью главного воздушного тракта двигателя после воздушного фильтра. Это позволяет свести к минимуму изменение состава приготавливаемой карбюратором рабочей смеси при загрязнении воздушного фильтра, т.к. происходящее при этом повышение разрежения в диффузорах карбюратора и вызываемое этим повышение расхода топлива через жиклеры компенсируется пропорциональным повышением разрежения в поплавковой камере, что оказывает тормозящее воздействие на истечение топлива. Иными словами, перепад разрежения между диффузором и поплавковой камерой останется неизменным и расход топлива сохранится на прежнем уровне.

Балансировочный канал карбюратора ДААЗ-1111 начинается отверстием 15 в крышке поплавковой камеры и выходит на фланец присоединения воздушного фильтра каналом 17.

Главные дозирующие системы первой и второй камер (рис.18) идентичны по своей конструкции. Они имеют главные топливные жиклеры 6, установленные на резьбе во внутренних торцах слегка наклоненных вниз каналов, сообщающихся с полостью поплавковой камеры. Снаружи каналы имеют резьбовые пробки 8, зафиксированные от отворачивания пружинными стопорами 9, через которые производится доступ к жиклерам без разборки карбюратора, подобно тому, как это сделано на карбю раторах К-126 автомобилей «Волга».

В средней части стенок каждого из эмульсионных колодцев имеется по одному отверстию большого сечения, которые каналами соединяются с каналами распылителей 3, расположенных внутри так называемых малых диффузоров 4, съемных деталей, вставленных на упругих фиксаторах в средние часта больших диффузоров.

Топливо к главным топливным жиклерам поступает через отверстия 7 в стенках наклонных каналов, кромки которых немного приподняты над дном поплавковой камеры, чтобы уменьшить вероятность попадания в них осадка.

Под действием разрежения в зоне отверстий распылителей топливо через главные топливные жиклеры поднимается по эмульсионным колодцам и доходит до уровня радиальных отверстий в эмульсионных трубках, после чего подхватывается выходящим из центральных частей трубок воздухом, прошедшим через воздушные жиклеры и, образуя топливную эмульсию, уносится по боковым каналам к отверстиям распылителей, где, наконец, смешивается с основным потоком воздуха.

Система холостого хода (рис.19) карбюратора подает топливовоздушную эмульсию непосредственно под дроссельную заслонку 16 первой камеры через втулку-жиклер 15 нерегулируемого сечения. При этом для регулировки состава смеси на холостом ходу используется винт 11, изменяющий количество воздуха, подсасываемого в канал системы холостого хода вблизи его выходного отверстия. Таким образом, при этой схеме системы холостого хода при помощи винта качества изменяется количество дополнительного воздуха, поступающего в систему холостого хода и изменяющего разрежение в ее каналах.

Винт качества расположен в отдельном блоке 12, крепящемся к торцу корпуса дроссельных заслонок двумя винтами.

Система холостого хода имеет также щелевое выходное отверстие 14, расположенное у кромки закрытой дроссельной заслонки первой камеры, и соединенное с каналами системы.

Топливо в систему холостого хода забирается из эмульсионного колодца 4 главной дозирующей системы первой камеры, что необходимо для согласования работы обеих систем. Далее топливо поступает с торца к топливному жиклеру холостого хода 7 на электромагнитном клапане и, выйдя из него, смешивается с воздухом.

Воздух, поступающий в зону смешения с топливом, забирается из отверстия 5 на верхнем фланце входной горловины карбюратора. Пройдя по системе воздушных каналов в крышке карбюратора, через отверстие в прокладке воздух поступает к воздушному жиклеру холостого хода 6. После смешения топлива с воздухом образовавшаяся топливовоздушная эмульсия по каналу поступает к уже описанным выходным отверстиям системы холостого хода.

На холостом ходу, когда дроссельная заслонка закрыта и щелевое переходное отверстие находится выше ее кромки, через него в канал системы холостого хода подсасывается дополнительное количество воздуха. При работе двигателя с минимальным открытием дроссельной заслонки щелевое переходное отверстие оказывается ниже ее кромки, т.е. в зоне высокого разрежения. В результате разрежение в каналах системы холостого хода повышается, топливо начинает интенсивно подсасываться через жиклер холостого хода и выходить через щелевое переходное отверстие, чем обеспечивается плавный переход от холостого хода к режиму средних нагрузок, при которых разрежение в диффузоре первой камеры повышается до величины, достаточной для нормальной работы главной дозирующей системы.

Проследим сеть каналов системы холостого хода по отдельным частям карбюратора. Эмульсирующий топливо воздух поступает через отверстие 2 (рис.13) в крышке карбюратора через вертикальный канал, выходящий на ее нижний фланец. В этом месте на нижней плоскости крышки имеется выборка 4 (рис.14), через которую воздух сквозь отверстие в прокладке поступает к воздушному жиклеру системы холостого хода.

В корпусе карбюратора имеются следующие элементы системы холостого хода: прежде всего это воздушный 4 (рис.10) и топливный (в электромагнитном клапане) 7 (рис.19) жиклеры холостого хода, ломаный эмульсионный канал 7 (рис.4), выходящий на его нижний фланец отверстием 3 (рис.12) с проходной втулкой.

Далее эмульсия поступает в корпус дроссельных заслонок, в полость, закрытую с торца заглушкой 3 (рис. 16). В стенке полости выполнено щелевое переходное отверстие. Через эту полость проходит канал 6 (рис.15), просверленный с верхней плоскости корпуса дроссельных заслонок и соединяющий ее с выходным отверстием системы холостого хода.

Таким образом, в отличие от других карбюраторов, система холостого хода карбюратора ДААЗ-1111 не имеет на выходном эмульсионном канале винта, служащего для регулировки состава смеси. Здесь эта задача решается при помощи винта, регулирующего сечение воздушного канала, который соединяет наддроссельное пространство карбюратора с полостью выходного канала системы холостого хода. Вращением винта изменяется количество воздуха, поступающего в систему холостого хода, а, следовательно, разрежение и состав приготавливаемой карбюратором на холостом ходу рабочей смеси.

Чем больше отвернут винт, тем больше воздуха поступает в канал системы холостого хода, при этом разрежение в нем падает, меньшим становится разрежение у топливного жиклера системы холостого хода, меньше поступает через него топлива и больше обедняется состав смеси на холостом ходу. При заворачивании винта наблюдается обратная картина, т.е. состав смеси обогащается.

Чтобы влияние положения воздушного винта на состав смеси было достаточно велико, на выходном отверстии системы холостого хода установлена втулка-распылитель, представляющая собой жиклер, ограничивающий поступление разрежения из задроссельного пространства к каналу системы холостого хода.

Переходная система второй камеры (рис.19) во многом похожа на систему холостого хода, однако ее топливный жиклер 21 «питается» непосредственно из поплавковой камеры. В системе также имеется воздушный жиклер 23 и переходные отверстия 20 у кромки закрытой дроссельной заслонки второй камеры, работающее аналогично переходному отверстию системы холостого хода.

Эконостат (рис. 20) представляет собой простейшую дозирующую систему с жиклером в топливозаборной трубке 4 и отдельным распылителем 2, высоко поднятым над диффузором вторичной камеры. Вследствие расположения распылителя эконостата вне диффузора, т.е. в зоне низкого разрежения, он начинает подавать заметное количество топлива только при больших расходах воздуха через карбюратор, что соответствует работе двигателя на высоких оборотах. Каналы эконостата целиком расположены в крышке карбюратора. Забор топлива производится непосредственно из поплавковой камеры по запрессованной в крышку трубке 10 (рис. 14) с размещенным в ней несъемным жиклером.

топливо подается в первичную камеру через верхний канал 8 малого диффузора, расположенный над основным выходным каналом главной дозирующей системы и представляющий собой распылитель инерционного обогатителя;

забор топлива в систему инерционного обогатителя производится через трубку 3, поднятую над установившимся уровнем топлива в поплавковой камере.

Инерционный обогатитель служит для коррекции (обогащения) состава приготавливаемой карбюратором горючей смеси на режимах разгона, а также при движении на подъем с большим углом открытия дроссельной заслонки, когда уровень топлива в поплавковой камере отклоняется от горизонтали и достигает нижнего среза топливозаборной трубки. Под действием разрежения в зоне распылителя инерционного обогатителя топливо начинает подсасываться в каналы системы и поступать в диффузор первичной камеры.

Инерционный обогатитель прекращает работать, когда при уменьшении угла открытия дроссельной заслонки снижается разрежение у отверстия распылителя, или когда вследствие уменьшения ускорения автомобиля, а также при его выезде на горизонтальный участок дороги, зеркало топлива в поплавковой камере выравнивается и отверстие топливозаборной трубки оказывается выше уровня топлива.

В стакане 8 между подпятником и тарелкой 6 установлена жесткая пружина 9. При резком открытии дроссельной заслонки, когда диафрагма ускорительного насоса, удерживаемая относительно медленно удаляемым топливом, не может быстро переместиться на расстояние, определяемое ходом рычага, пружина 9 сжимав ется и затем, по мере удаления топлива из полости насоса, медленно распрямляется, обеспечивая, во-первых, защиту диафрагмы от разрыва большим давлением топлива и, во-вторых, растягивание процесса впрыскивания на 1-2 с, что требуется для устойчивой работы двигателя.

Всасывающий клапан ускорительного насоса выполнен в виде шарика со стержнем-ограничителем 3, (рис. 10) его хода, с запрессованным в отверстие вертикального канала в стенке поплавковой камеры. Топливо из поплавковой камеры забирается через отверстие в ее стенке со стороны ускорительного насоса, ближе к топливным жиклерам.

Ускорительный насос имеет также дренажный канал с жиклером 12 (рис. 21) диаметром около 0,4 мм, соединяющий рабочую полость насоса с поплавковой камерой. Выходное отверстие дренажного канала расположено в стенке поплавковой камеры недалеко от топливозаборного отверстия. Дренажный канал с жиклером предназначен для корректировки (уменьшения) подачи топлива ускорительным насосом при медленном открытии дроссельных заслонок, когда нет необходимости в подаче дополнительного топлива (кроме того, что дозируется пневматическими системами) или, по крайней мере, эта необходимость не столь острая.

Пусковое устройство (рис. 22) служит для приготовления и дозирования весьма обогащенной горючей смеси (в 10-20 раз более богатой, чем обычно), необходимой для пуска холодного двигателя. Требуемое обогащение состава смеси в период пуска достигается за счет создания разрежения у распылителя главной дозирующей системы первичной камеры путем перекрытия входной горловины карбюратора воздушной заслонкой 9. Одновременно немного приоткрывается дроссельная заслонка 2, обеспечивая заданную подачу обогащенной горючей смеси.

Сразу же после пуска воздушная заслонка автоматически приоткрывается, чем предотвращается излишнее переобогащение состава смеси в период прогрева. По мере прогрева двигателя водитель может уменьшать подачу горючей смеси, а также уменьшать степень ее обогащения путем закрытия дроссельной и открытия воздушной заслонок, утапливая манетку управления пусковым устройством.

Необходимые взаимосвязанные перемещения заслонок в период пуска и прогрева обеспечиваются профилированным в виде кулачка рычагом 1 управления пусковым устройством, а также диафрагменным пусковым механизмом, управляемым разрежением за дроссельной заслонкой.

Перемещение дроссельной заслонки определяется, во-первых, задаваемым водителем через трос 5 углом поворота кулачка, во-вторых, формой наружного профиля кулачка и, в-третьих, положением регулировочного упорного винта 3 на рычаге 4, связанном с осью дроссельной заслонки 2.

При выключенном пусковом устройстве, когда профилированный рычаг зафиксирован вошедшим в его специальное отверстие 12 (рис. 2) подпружиненным шариком, находящемся в цилиндрическом отверстии корпуса карбюратора, верхняя кромка 3 паза 6 (рис. 22), воздействуя на штифт 4, принудительно устанавливает воздушную заслонку 9 в открытое (вертикальное) положение несмотря на противодействие возвратной пружины растяжения 8 (рис. 22), стремящейся через рычаг 10 закрыть заслонку. По мере вытягивания манетки управления пусковым устройством и поворота профилированного рычага, верхняя кромка паза, скользя по штифту рычага 10, освобождает его и воздушная заслонка под действием пружины 8 закрывается. В случае загрязнения и заклинивания оси воздушной заслонки, усилия пружины 8 оказывается недостаточно для ее закрытия. В этом случае со штифтом рычага 10 начинает контактировать нижняя кромка 7 паза и закрытие заслонки (правда, неполное) происходит принудительно.

При неработающем двигателе, или в начале прокручивания коленчатого вала стартером, разрежение в полости диафрагменного механизма отсутствует, Г-образный шток 11 под действием пружины диафрагмы выдвинут из корпуса и не оказывает влияния на положение закрытой под действием пружины 8 воздушной заслонки. При первых же вспышках частота вращения коленчатого вала увеличивается, разрежение за дроссельной заслонкой и в диафрагменной полости повышается и достигает значения, выше которого передаваемое от диафрагмы 12 усилие на шток 11 превышает усилие пружины 8, в результате чего воздушная заслонка приоткрывается.

Величина приоткрытая воздушной заслонки при полностью вытянутой манетке управления пусковым устройством определяется положением регулировочного винта 13 с контргайкой, расположенного в крышке диафрагменного механизма и ограничивающего ход штока под действием разрежения.

Для того, чтобы не допускать выброса в атмосферу весьма токсичных (более чем в десятки раз по сравнению с отработавшими) картерных газов, на современных двигателях применяется система принудительной вентиляции картера. Для этого картерные газы проходят под действием разрежения в полость воздушного фильтра после фильтрующего элемента и, смешиваясь с воздухом, вновь поступают в двигатель.

Однако на режимах малых нагрузок разрежение в воздушном фильтре невелико, и такая система не обеспечивает удовлетворительного удаления картерных газов. Для повышения эффективности работы системы вентиляции картера ее дополняют так называемой малой ветвью, соединяющей штуцер отвода газов с задроссельным пространством. Диаметр этого дополнительного канала не превышает 1,5мм.

Штуцер 10 (рис. 15) для присоединения малой ветви системы вентиляции картера расположен на карбюраторе в его нижней части, в зоне дроссельной заслонки второй камеры. Далее газы поступают по каналу в выемку на нижнем фланце и выходят непосредственно в задроссельное пространство под дроссельной заслонкой.

Привод дроссельных заслонок служит для управления количеством поступающей в двигатель горючей смеси, а, следовательно, и изменения его мощности. Для этого имеются две поворотные дроссельные заслонки: первая, связанная через рычажный привод и трос с педалью газа, и вторая, открывающаяся через рычажный привод на карбюраторе на последней трети полного хода педали.

Вторая дроссельная заслонка, открывается посредством специального промежуточного рычага 17 (рис. 2), связывающего оси двух заслонок

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕГУЛИРОВКА КАРБЮРАТОРОВ

Карбюраторы ДААЗ-1111, как, впрочем, и любые другие современные модели, весьма надежны и требуют при правильной эксплуатации минимального объема работ по обслуживанию. Большинство неисправностей бывает связано либо с неквалифицированным вмешательством в регулировку, либо с засорением в нескольких характерных зонах, вызванным чаще всего неправильными действиями владельца.

Все эти работы не требуют обязательного демонтажа карбюратора с двигателя. Наружная мойка производится при помощи кисти любой растворяющей маслянистые отложения жидкостью: бензином, керосином, дизельным топливом, хотя, ввиду большей пожарной безопасности и меньшей испаряемости, следует предпочесть последние две. Еще лучше применять специальные химические составы, смываемые водой. После мойки карбюратор следует обдуть снаружи сжатым воздухом, хотя бы от автомобильного компрессора. Периодичность этой работы определяется самим водителем, исходя из условий эксплуатации, и обычно бывает необходима 1-2 раза в год.

Перед тем как мыть карбюратор на двигателе, снимите воздухоочиститель. В процессе мойки соблюдайте осторожность и не допускайте, чтобы грязь попала во внутренние полости карбюратора и впускной коллектор. Засорение сетчатого фильтра на входе в поплавковую камеру происходит сравнительно редко, и за весь период эксплуатации автомобиля аккуратному водителю может совсем не понадобиться его промывать, тем более, что в системе питания современных автомобилей есть дополнительный фильтр тонкой очистки топлива, весьма эффективно защищающий карбюратор от загрязнений.

О признаках засорения сетчатого фильтра будет сказано далее, в разделе, посвященному поиску неисправностей карбюратора. Тем не менее, чтобы избежать отказов в пути, один раз в 2-3 года, имеет смысл проверить состояние фильтра, тем более, что эта работа несложная, хотя и она требует соблюдения определенных правил.

Перед тем как отвернуть топливоподводящий штуцер, закрывающий доступ к сетчатому фильтру, подкачайте вручную топливо бензонасосом, чтобы поплавковая камера полностью заполнилась топливом и игольчатый клапан закрылся.

Отвернув штуцер, извлеките сетчатый фильтр, промойте его растворителем или бензином, продуйте воздухом.

Чем мыть внутренние поверхности и детали карбюратора? Обычно достаточно делать это чистым бензином. Однако бензин плохо растворяет смолы и лакообразные отложения, особенно на поверхностях воздушных каналов и в отверстиях воздушных жиклеров. Можно промывать карбюратор, применяя растворители № 645-652, гексапен, ацетон, дихлорэтан, амилацетат или различные спирты. Наилучший же результат дают аэрозольные препараты, специально предназначенные для промывки карбюраторов. Надо только помнить, что сильные растворители могут повредить неметаллические детали (прокладки, диафрагмы), их надо мыть отдельно и только в бензине.

Читайте также:  Налоги если продаешь автомобиль менее 2 лет

Неотложная промывка поплавковой камеры может понадобится, если внезапно нарушится нормальная работа двигателя под средней и большой нагрузкой, чаще всего вследствие прекращения нормальной топливоподачи через главную топливодозирующую систему первичной камеры. Так как эта работа требует определенных условий, сначала нужно убедиться в ее необходимости: может оказаться, что предполагаемая неисправность вызвана другими причинами.

В этом случае следует предварительно проделать все операции, описанные ниже в разделе о методах поиска неисправностей.

Если двигатель работает нормально и соблюдены элементарные меры, позволяющие избежать загрязнения топливного бака (например, исключены случаи заправки автомобиля из канистр через воронку без сетки), практически нет необходимости заниматься этим чаще, чем один раз в 2-3 года. Косвенным свидетельством степени загрязнения поплавковой камеры является состояние уже упомянутого сетчатого фильтра на входе в карбюратор: засорение плотными отложениями хотя бы одной пятой части поверхности сетки указывает на целесообразность проверки состояния поплавковой камеры и, возможно, ее очистки.

Часто автолюбители, не снимая карбюратор с двигателя, ограничиваются тем, что протирают дно поплавковой камеры тряпкой, считая, что достигли цели. Однако подобная очистка может принести больше вреда чем пользы. Дело в том, что не вытертая до конца грязь, а также волокна, отделившиеся от тряпки, могут остать ся в поплавковой камере и стать причиной засорения топливных жиклеров, в первую очередь жиклера холостого хода. В результате исправный карбюратор после такой чистки может вообще перестать работать.

Чтобы избежать этого, очищайте поплавковую камеру карбюратора, не снятого с двигателя, резиновой грушей, высасывая топливо со дна заполненной им поплавковой камеры. Перемещая носик груши по поверхности дна, последовательно удалите все загрязнения, стараясь не взмутить отложения. По мере необходимости в поплавковую камеру осторожно долейте из небольшой емкости чистый бензин. На завершающем этапе дно камеры и все углубления можно протереть жесткой тонкой кисточкой и повторно удалить грушей загрязнения. Если вы промывали карбюратор только для профилактики, этим можно ограничиться.

Если же промывка была предпринята с целью устранения явного засорения главных топливных жиклеров (его признаки приведены ниже, в разделе, посвященном поиску и устранению неисправностей), то после описанных операций с использованием груши, и заполнения поплавковой камеры чистым топливом, выворачивают главные воздушные жиклеры с эмульсионными трубками и продувают сверху сильной струёй воздуха эмульсионные колодцы. При этом из топливозаборных отверстий на дне поплавковой камеры должны выходить пузыри воздуха, вынося с собой загрязнения.

При необходимости топливные жиклеры можно вывернуть длинной узкой отверткой и вынуть при необходимости, плотно насадив их на заточенную деревянную палочку. Для доступа к жиклерам необходимо лезвием отвертки снять пружинный фиксатор с пробок на стенке поплавковой камеры и отвернуть пробки.

В целом, несмотря на очевидные преимущества чистой поплавковой камеры, не следует преувеличивать отрицательную роль ее загрязнения: мелкая слежавшаяся пыль на дне камеры может накапливаться в течение нескольких лет, не вызывая никаких нарушений работы карбюратора.

В то же время на работу карбюратора существенно влияют отложения в калиброванных отверстиях воздушных жиклеров дозирующих систем. Это прежде всего воздушный жиклер системы холостого хода, а также воздушный жиклер главной дозирующей системы первичной камеры. Значительно меньше засоряются отложениями главный воздушный и воздушный жиклеры переходной системы второй камеры, что объясняется относительно небольшой долей времени ее работы.

Проверять состояние указанных воздушных жиклеров целесообразно при очередном снятии крышки карбюратора. Чистить смоченные бензином жиклеры можно медной проволокой или деревянной палочкой. (Для этого главные воздушные жиклеры с эмульсионными трубками следует вывернуть).

В нормальных условиях эксплуатации исправного двигателя с небольшим прорывом картерных газов необходимость очистки воздушных жиклеров, в первую очередь жиклера холостого хода и главного первой камеры, наступает обычно в первый раз не ранее чем после пробега 40-50 тыс. км. В дальнейшем, по мере изнашивания двигателя, очистка воздушных жиклеров может требоваться уже каждые 20-25 тыс. км.

Первую операцию выполняют с целью выяснения состояния демпфирующего шарика иглы и определяемой этим возможностью выполнить последующую регулировку. При этом на снятой с карбюратора крышке замеряют расстояние от плоскости прокладки до выступающего из иглы шарика. Нормальным считают расстояние 10 мм. При меньшем размере можно установить под седло иглы дополнительную прокладку.

Перед проверкой уровня топлива предварительно отверните винты крепления крышки карбюратора, оставляя завернутыми два средних винта. Кроме того, ослабьте винт крепления хомута на топливном шланге. Затем вручную подкачайте топливо бензонасосом до полного заполнения поплавковой камеры; по возможности быстро, чтобы исключить проникновение «лишнего» топлива в поплавковую камеру, снимите шланг с топливоподводящего штуцера.

Теперь можно отвернуть два оставшихся винта крепления крышки и снять ее с карбюратора. Не вынимая поплавка, при помощи подходящего глубиномера (например, хвостовика штангенциркуля) проконтролируйте глубину расположения уровня топлива относительно верхней плоскости корпуса карбюратора. Нормальной является величина 22-23 мм.

Один раз правильно выполненная регулировка поплавкового механизма сохраняется весьма долго, нарушаясь чаще всего по причине неаккуратного обращения со снятой крышкой, а также вследствие естественного изнашивания трущихся деталей механизма: запорного конуса иглы, ее седла, язычка и оси кронштейна.

В эксплуатации обычно нет необходимости специально разбирать исправно работающий карбюратор для проверки регулировки, достаточно совместить ее контроль с очередной очисткой поплавковой камеры и воздушных жиклеров.

Обслуживание ускорительного насоса начните с демонтажа распылителя. Сняв крышку карбюратора, осторожно приподнимите его лезвием отвертки, введенным под основание трубок, а затем, захватив плоскогубцами за лыски, вынимайте распылитель. Чистоту жиклеров в трубках проверьте, надев резиновый шланг на основание распылителя (для наглядности можно опустить распылитель в воду). Заодно можно проконтролировать и герметичность нагнетательного клапана (для этого нужно держать распылитель вертикально и создавать в шланге разрежение). Если жиклеры засорены, прочистите их медной проволочкой и продуйте. При необходимости трубки с жиклерами можно отделить от держателя путем вращения и вытягивания их из отверстий, в которые они запрессованы.

В случае очень сильного засорения жиклеров можно прочистить их тонкой стальной проволокой.

Обратный клапан и топливоподводящий канал проверьте, прижав резиновую трубку к отверстию забора топлива в поплавковой камере: воздух должен свободно проходить при нагнетании и не проходить, когда в трубке разрежение.

Сняв крышку, диафрагму и пружину ускорительного насоса, промойте его полость и при помощи проволоки убедитесь в том, что она свободно сообщается с вертикальным топливоподающим каналом в корпусе карбюратора.

При сборке системы нужно смочить основание распылителя каплей масла, чтобы не повредить уплотняющее резиновое кольцо.

Залив в поплавковую камеру топливо на треть ее объема, перемещайте рычаг ускорительного насоса до начала подачи топлива через распылители. Затем проверьте работу дренажного жиклера, наклонив карбюратор так, чтобы дренажное отверстие в стенке поплавковой камеры было на одном уровне с топливом. Приведя ускорительный насос в действие при таком положении карбюратора, убедитесь в наличии небольшой струи топлива и пузырьков воздуха, выходящих из дренажного отверстия.

При отсутствии этих признаков выверните резьбовую иглу над дренажным жиклером и проволокой диаметром 0,35 мм прочистите его.

Первый способ регулировки следует применять, когда по каким-либо причинам карбюратор был снят с автомобиля и подвергался полной разборке. Точно так же поступают и на сборочном конвейере завода, выпускающего карбюраторы.

На карбюраторах ДААЗ-1111 при повернутом против часовой стрелки до упора рычаге-кулачке управления пусковой системой, зазор, контролируемый круглым щупом (сверлом), у верхней (по ходу воздуха) кромки дроссельной заслонки должен составлять около 0,8 мм (рис. 22, зазор С). Он регулируется винтом с шестигранником 7 мм на головке и шлицем на хвостовике. Этот винт часто подвержен коррозии. Стронуть с места туго сидящий винт лучше рожковым ключом на 7 мм, вращать его можно отверткой.

Зазор у нижней кромки воздушной заслонки (зазор В) регулируется на величину 2,2 мм винтом в крышке диафрагменного механизма пусковой системы после ослабления контргайки. При этом загнутый на конце шток диафрагмы должен быть принудительно (хотя бы отверткой) утоплен до упора в регулировочный винт. После регулировки винт должен быть зафиксирован контргайкой.

Имея в распоряжении газоанализатор, регулировку положения воздушной заслонки можно выполнить, ориентируясь на содержание в отработавших газах оксида углерода (СО). При полностью вытянутой манетке управления воздушной заслонкой концентрация СО на работающем двигателе должна составить 8-9%.

Если концентрация СО меньше рекомендованной величины, винт на крышке диафрагменного механизма заверните, прикрывая воздушную заслонку, и наоборот, если концентрация СО больше, то отверните винт.

Регулировка системы холостого хода карбюратора выполняется с целью обеспечения устойчивой работы двигателя с минимальным содержанием СО в отработавших газах. При выполнении такой регулировки наиболее частой ошибкой, допускаемой даже на станциях технического обслуживания, является чрезмерное переобеднение состава смеси на холостом ходу, приводящее к неустойчивой работе двигателя и даже к росту содержания в отработавших газах углеводородов (СН), также нормируемых действующим стандартом.

Дело в том, что при регулировке содержания СО в отработавших газах газоанализатор четко отслеживает изменение положения винта качества и соответствующее ему изменение состава смеси только при значениях СО больше 0,4%. Иными словами, добиваясь оптимальной регулировки карбюратора на холостом ходу, нельзя ориентироваться на показания газоанализатора по оксиду углерода в диапазоне величин, менее 0,4%, находящихся у порога точности и достоверности показаний прибора. Поэтому, не имея в распоряжении газоанализатора на СН, не следует регулировать карбюратор на содержание СО менее 0,4%.

Располагая газоанализатором на СН, при желании можно отрегулировать карбюратор на предельно обедненный состав смеси, ориентируясь на минимальное значение СН в отработавших газах, которое у исправного двигателя с нормально работающей и отрегулированной системой зажигания может достигаться при уровне СО в пределах 0,25-0,3%. На рис. 26 в качестве примера приведена типичная зависимость содержания углеводородов в отработавших газах при изменении регулировки состава смеси на холостом ходу, определяющей величину содержания оксида углерода в отработавших газах. Резкий рост концентрации СН при переобеднении состава смеси ( при значениях СО около 0,25%) свидетельствует о начале пропусков воспламенения горючей смеси в двигателе, приводящих к его неустойчивой работе на холостом ходу и малых нагрузках.

Для надежности еще раз повторяют обе вышеописанные операции с винтами качества и оборотов (количества). После этого на двигателе, работающем на холостом ходу с повышенной на 50-75 мин»1 частотой вращения, не трогая больше винт количества, отворачивают винт качества, добиваясь падения частоты вращения на 50-75 мин»1, т.е. до нормальной величины. На этом регулировка считается законченной.

Такой способ регулировки, особенно удобный при наличии точного тахометра, регистрирующего изменение частоты вращения на каждые 10 мин»1, позволяет без применения газоанализатора гарантировать содержание СО в отработавших газах на уровне не более 1,5%, т.е. в пределах нормы, составляющей 3%.

Другие существующие способы регулировки карбюратора на холостом ходу без применения газоанализатора, например, с использованием устанавливаемого в гнездо для свечи зажигания так называемого индикатора качества смеси (например, ИКС-2 или подобные ему зарубежные изделия) с кварцевым окном, не позволяют гарантировать требуемое содержание СО в отработавших газах. Так, например, рекомендуемое в качестве критерия правильной регулировки голубое пламя в окне индикатора ИКС-2 наблюдается при содержании СО и 3, и 4 и даже 5,5%. Пламя в цилиндре меняет цвет с голубого на желтый только при содержании СО более 6%, т.е. далеко за допустимыми пределами.

Рис. 25. Зависимость пропускной способности жиклеров (в смЭ/мин воды) от величин маркировки

Рис. 26. Типичная зависимость содержания углеводородов (СН) в отработавших газах исправного двигателя от регулировки состава смеси (СО) на холостом ходу

Рис. 27. Типичная зависимость содержания основных компонентов отработавших газов от состава смеси ‘alfa’

Рис. 28. Типичные зависимости СО и СН на исправном двигателе при повышении частоты вращения коленчатого вала

ПОИСК И УСТРАНЕНИЕ ПРИЧИН НЕИСПРАВНОСТЕЙ КАРБЮРАТОРОВ

Поиск и устранение причин нарушения нормальной работы двигателя, связанных с системой питания, всегда вызывают серьезные затруднения не только у индивидуальных владельцев, но и у работников предприятий автосервиса, так как требуют от исполнителя более высокой квалификации, чем для выполнения других типовых работ по ремонту и техническому обслуживанию узлов автомобиля. Тем не менее, многие автолюбители, выполняя приведенные ниже рекомендации, будут вполне в состоянии устранить типичные неисправности без обращения на станцию технического обслуживания.

При поиске неисправностей карбюратора очень важно сразу исключить возможность наличия неполадок в топливоподающей системе до карбюратора, а так же в системе зажигания. Иными словами, предпринимать какое-либо вмешательство в карбюратор нужно в последнюю очередь, убедившись в исправности других систем.

Различные нарушения работы карбюратора чаще всего проявляются в ухудшении ездовых качеств автомобиля. Под ездовыми качествами здесь следует понимать совокупность факторов, определяющих ощущения водителя при воздействии на педаль управления дроссельной заслонкой, которые он субъективно связывает с ускорением автомобиля. Организм человека очень чувствителен к ускорению и реагирует даже на небольшие его изменения. О нарушениях нормальных ездовых качеств, предположительно являющихся следствием дефектов карбюратора, можно говорить, если при изменении положения дроссельной заслонки не происходит ожидаемого привычного изменения скорости движения, т.е. ускорения.

Характер нарушения нормальных ездовых качеств может весьма точно свидетельствовать о причине неисправности. Владельцу автомобиля полезно знать об основных разновидностях этих нарушений, известных под названиями: провал, рывок, подергивание, раскачивание, вялый разгон.

Под вялым разгоном понимают низкую интенсивность увеличения скорости движения автомобиля.

Еще раз напоминаем, что перед тем как предпринимать серьезное вмешательство в работу карбюратора с целью поиска причин и устранения упомянутых неисправностей, нужно убедиться, что они связаны с дефектами именно карбюратора, а не системы топливоподачи до карбюратора или системы зажигания. Так, в системе питания могут быть засорены топливозаборник, фильтр тонкой очистки топлива или сетка в топливном насосе, негерметичны клапаны топливного насоса. Все эти неисправности могут приводить к нарушению нормальной работы двигателя, появлению провалов в первую очередь при движении с повышенной нагрузкой, в то время как на малой нагрузке или холостом ходу потребление двигателем топлива невелико и даже при нарушенной топливоподаче его хватает для нормальной работы в этих режимах.

Фильтр тонкой очистки топлива, предварительно освобожденный от топлива, должен свободно продуваться воздухом под минимальным давлением (таким, какое можно создать ртом). При сомнениях в чистоте фильтра и отсутствии запасного можно некоторое время эксплуатировать автомобиль и без него.

Магистраль подачи топлива к бензонасосу должна легко продуваться с хорошо слышимым интенсивным бурлением топлива в баке. Перед этой проверкой нужно обязательно снять пробку с бензобака, иначе возможно его повреждение!

Сетчатый фильтр топливного насоса и отсутствие загрязнений полости в корпусе под сеткой проверьте, отвернув болт с головкой 10 мм и сняв крышку.

При установке крышки насоса после его проверки обратите внимание на то, правильно ли сориентирована сетка: ее круглое отверстие диаметром 7,5 мм должно совпадать с отверстием впускного клапана, причем кольцевая выступающая закраина этого отверстия на сетке должна быть обращена вниа Затягивать болт крепления крышки следует весьма осторожно, чтобы не продавить ее и не повредить резьбу в корпусе насоса.

Приступая к поиску причин ухудшения динамики разгона, рывков, провалов, учтите, что в этом, возможно, «виновата» система зажигания.

Частые короткие и резкие рывки (частое резкое подергивание) могут быть следствием нарушения нормального искрообразования: при дефектных свечах, значительно повышенной по сравнению с нормой величине искрового промежутка, загрязненных проводах и крышке распределителя.

Слабое мягкое подергивание может быть вызвано слишком малым (менее 0,6 мм) искровым промежутком свечей зажигания.

Следует еще раз отметить, что в любом случае перед вмешательством в систему питания сначала всегда целесообразно проверить техническое состояние системы зажигания и найти явные дефекты и нарушения регулировок в отношении зазоров между электродами свечей, установки угла опережения зажигания, чистоты высоковольтных проводов, катушки зажигания, исправности коммутатора и вакуумного регулятора опережения зажигания.

Убедившись, что причина нарушения работы двигателя по всей вероятности в карбюраторе, целесообразно визуально оценить состояние его узлов и элементов с целью выявить дефекты до опробования на двигателе. Это особенно важно, если карбюратор был снят с автомобиля и еще не проверен в движении. После устранения выявленных таким образом дефектов во всех случаях гарантируется возможность запуска двигателя и движения хотя бы с прикрытой воздушной заслонкой.

Чтобы детально осмотреть элементы карбюратора, снимите с корпуса крышку. Далее проверяйте состояние элементов карбюратора отдельно по трем основным частям: крышке, корпусу и корпусу дроссельных заслонок.

Жиклеры эконостата и инерционного обогатителя на двух топливозаборных трубках, запрессованных в нижнюю плоскость крышки, не должны иметь засорений.

Воздушная заслонка 8 должна максимально плотно (без косых щелей, неравномерных зазоров у кромок) перекрывать входную горловину и без заедания поворачиваться на оси.

Нажимая отверткой на нижнюю половину закрытой воздушной заслонки, убедитесь, что она свободно поворачивается на оси и легко, без заедания, возвращается в закрытое положение.

Рычаг на оси 9 воздушной заслонки не должен иметь люфта в месте заделки.

Шток диафрагменного механизма пускового устройства при принудительном утапливании должен легко перемещаться и при освобождении под действием сжатой пружины возвращаться в исходное положение.

В заключение проверьте герметичность игольчатого клапана, поворачивая крышку иглой вверх и создавая разрежение в штуцере хотя бы резиновой грушей: в течение 30 с сжатая груша не должна хоть сколько-нибудь заметно менять свою форму.

Электромагнитный клапан 15 (рис. 8) должен иметь иглу с наконечником и жиклер 16 требуемой маркировки. Клапан должен быть завернут в крышку достаточно плотно, до полного вдавливания резинового уплотнительного кольца в дистанционную втулку.

При осмотре корпуса убедитесь, что поплавок 4 без малейшего заедания вращается на оси 5 и не имеет заметного перекоса. Фиксатор 6 оси поплавка должен быть вставлен в соответствующие пазы на стенке поплавковой камеры. Верхняя часть фиксатора не должна выступать за плоскость корпуса карбюратора.

Сняв фиксатор, ось и поплавок, убедитесь в чистоте поплавковой камеры.

Проверьте наличие и соответствие требуемым маркировкам главных жиклеров: двух топливных 7 под пробками 8 в стенке поплавковой камеры, и двух воздушных 11 с эмульсионными трубками.

Держатель 10 распылителей ускорительного насоса должен быть плотно вставлен в корпус карбюратора.

Шарик нагнетательного клапана ускорительного насоса должен свободно перемещаться в канале держателя распылителей (проверяется по стуку).

Ось рычага ускорительного насоса должна быть плотно запрессована в кронштейны, винты крепления крышки 14 затянуты. Когда вы оттягиваете рычаг привода ускорительного насоса, должно ощущаться сопротивление сжимаемой пружины диафрагмы.

Теперь проверьте ускорительный насос, заливая в поплавковую камеру бензин на половину ее глубины и вручную перемещая приводной рычаг. При этом после нескольких качков, необходимых для заполнения полости диафрагмы насоса, при каждом перемещении рычага из распылителей должны выходить ровные, не попадающие на стенки большого и малого диффузоров струи топлива. Нарушение формы и направления струй топлива чаще всего свидетельствует о засорении распылителей.

При подкачивании топлива из-под держателя 10 распылителей оно не должно подтекать.

При отсутствии струй топлива из распылителей убедитесь в свободном перемещении рычага привода ускорительного насоса на оси: бывает, что он «зависает» в отведенном положении и не воздействует на диафрагму. В этом случае размочите ось тормозной жидкостью и пассатижами раскачайте рычаг на оси.

При отсутствии «зависания» рычага убедитесь в исправности нагнетательного клапана и чистоте отверстий распылителей. При отсутствии положительного результата разберите диафрагменный механизм ускорительного насоса, промойте его полость и продуйте все отверстия каналов ускорительного насоса сильной струёй воздуха.

Читайте также:  Срок годности лака для автомобиля

Малые диффузоры 17 должны быть вставлены до упора в гнезда корпуса. При этом входные отверстия их каналов должны быть обращены к главным воздушным жиклерам.

Верхняя приваленная плоскость корпуса карбюратора не должна иметь выступающих забоин.

Оси 1, 4 (рис. 9) дроссельных заслонок 2, 3 должны свободно поворачиваться и не заклиниваться в крайних положениях. Если оси проворачиваются туго, размочите их бензином, тормозной жидкостью или другим растворителем.

Упорный винт 25 на рычаге дроссельной заслонки второй камеры должен быть отрегулирован таким образом, чтобы обеспечивать тонкую (до 0,05 мм) щель у кромок закрытой заслонки.

Каналы системы вентиляции картера, включая штуцер 26 подачи картерных газов, должны быть очищены от отложений и легко продуваться.

В специальном блоке 10 на корпусе дроссельных заслонок должен быть установлен винт 8 регулировки состава смеси на холостом ходу, фиксируемый резиновым уплотнительным кольцом 9. Сам блок с прокладкой 11 должен быть плотно привернут к корпусу.

Устранив визуально обнаруженные неисправности и не добившись нормальной работы карбюратора, приступайте к проверке его систем, причем в первую очередь тех, которые потенциально могут вызвать отмеченные дефекты. Рассмотрим их в приведенном выше порядке

Неустойчивая, вплоть до остановки, работа двигателя на холостом ходу может быть следствием слишком обедненного регулировкой состава смеси, засорения топливного жиклера холостого хода, а также неисправностей электромагнитного клапана на карбюраторе.

Выясняя причину дефекта, прежде всего убедитесь в чистоте жиклера (при необходимости восстановите ее), отвернув держатель и выдернув из него жиклер пассатижами. (Предварительно снимите воздушный фильтр.) Торцевое отверстие жиклера диаметром около 0,4 мм должно быть совершенно чистым: топливопода-чу нарушит даже одна едва видимая ворсинка в отверстии.

Очистите также и каналы в карбюраторе, для чего двигатель запустите без жиклера и держателя в карбюраторе и, поддерживая средние обороты коленчатого вала, на 10-15 с закройте пальцем отверстие под жиклер.

Только проделав все изложенное выше, и не достигнув при этом восстановления нормальной работы двигателя на холостом ходу, следует в соответствии с ранее приведенными рекомендациями попытаться заново отрегулировать состав смеси на холостом ходу. Такая последовательность проведения работ позволит избежать усугубления дефекта вследствие разрегулировки исправной системы холостого хода

Провал даже при самом медленном открытии дроссельной заслонки, если он наблюдается одновременно с крайне неустойчивой работой двигателя на холостом ходу, может быть связан с засорением жиклера холостого хода. В противном случае (при нормальной работе двигателя на холостом ходу) следует прежде всего проверить регулировку уровня топлива и отсутствие засорения главных топливных жиклеров.

Глубокий, вплоть до остановки двигателя, провал при попытке открыть дроссельную заслонку первичной или вторичной камер, кроме засорения главных топливных жиклеров, (особенно если он возник после чистки карбюратора с его полной разборкой), может быть вызван неправильной установкой малых диффузоров в гнезда.

Внимание! Входные отверстия каналов на плоскости одной из ножек распылителей должны быть обращены в сторону эмульсионных колодцев.

Легкие подергивания автомобиля при малой и средней скорости движения, вялый разгон чаще всего бывают вызваны слишком низким уровнем топлива в поплавковой камере вследствие неправильной регулировки поплавкового механизма.

Провалы, рывки и раскачивания автомобиля, внезапно возникающие после непродолжительной работы двигателя с повышенной нагрузкой и устраняемые прикрытием дроссельной заслонки и переходом на малые нагрузки, чаще всего бывают вызваны нарушением нормальной топливоподачи в поплавковую камеру. При уверенности в чистоте топливоподводяшей магистрали и исправности бензонасоса причину дефекта следует искать в загрязнении сетчатого фильтра карбюратора на входе в поплавковую камеру.

Провалы, возникающие при любом резком открытии дроссельных заслонок и исчезающие после работы двигателя в том же режиме в течение 2-5 с указывают на неисправность ускорительного насоса.

Затрудненный пуск прогретого двигателя, особенно если он заметно облегчается при полностью открытых дроссельных заслонках, чаще всего бывает связан с повышением уровня топлива в поплавковой камере вследствие либо неправильной регулировки поплавкового механизма, либо негерметичности игольчатого клапана. Вторая неисправность на карбюраторах ДААЗ-1111 достаточно редка, хотя клапан, разумеется, со временем может терять герметичность.

При отсутствии нового клапан карбюраторов ДААЗ-1111 можно попытаться притереть, осторожно (через бумажную прокладку) зажав хвостовик иглы в патроне ручной дрели и вводя абразив (пасту ГОИ с маслом или подобную ей) через входное отверстие. Ну а если это не помогло и никакого другого выхода нет, остается одно: разобрать клапан.

Понадобится плоская подставка (рис. 23) высотой 15 мм со сквозным отверстием диаметром 9,5 мм, а также оправка диаметром 1,5 мм и длиной 15-20 мм. На одном из ее торцев должна быть зенковка, позволяющая центрировать оправку на острие иглы. Клапан установите хвостовиком в отверстие подставки и введите оправку (зенковкой вниз) в его входной канал. Легкими ударами по оправке выпрессуйте направляющую вместе с иглой. При аккуратном выполнении работы только чуть притупляется вершина иглы, что не имеет практического значения. Для облегчения выхода направляющей можно осторожно подпилить удерживающую ее завальцовку на торце корпуса иглы.

Перед запрессовкой направляющую ориентируйте в то же положение, в каком она была до разборки. После сборки для надежности ее крепления можно слегка обжать край завальцовки. После восстановления работоспособности иглы требуется регулировка уровня топлива

Затрудненный пуск холодного двигателя, неустойчивый выход на повышенную частоту вращения коленчатого вала чаще всего бывает вызван неправильной регулировкой пускового устройства. Затрудненный пуск двигателя может также быть следствием неполного прикрытия воздушной заслонки. Проконтролируйте его на просвет, сняв крышку карбюратора и повернув рычаг до упора по часовой стрелке. Если щели у краев заслонки велики, отпустите два винта ее крепления на оси и добейтесь наиболее плотного прилегания. При этом нужно убедиться, что между штифтом 4 (рис. 2) на рычаге воздушной заслонки и верхним профилем 3 паза рычага 1 есть зазор, то есть рычаг не препятствует полному закрытию заслонки. В противном случае слегка подпилите прилив, в который упирается ограничитель хода на обратной стороне рычага 1.

Если диафрагма пускового устройства негерметична, воздушная заслонка приоткрывается недостаточно и запущенный двигатель работает с перебоями из-за переобогащения смеси, требуя утапливания кнопки подсоса. Диафрагму проверьте, прижав шланг диаметром 3-4 мм к жиклеру 3 (рис. 14) на крышке, куда выходит отверстие для подвода вакуума к пусковому устройству, и создавая в этом шланге разрежение. Следует также проверить чистоту канала, который идет от отверстия на нижнем фланце карбюратора к диафрагменному устройству.

Кроме того не стоит забывать, что низкая экономичность может быть вызвана и другими, не зависящими от карбюратора причинами: износом цилиндропоршне-вой группы и механизма газораспределения, нарушенными углами опережения зажигания и установки колес, состоянием шин, наличием крупногабаритного груза на багажнике на крыше и т.п.

Практика показывает, что размеры калиброванных отверстий в жиклерах при изготовлении выдерживаются точно и при правильной эксплуатации по существу с течением времени не изменяются. Поэтому обычно нет нужды проверять их действительную пропускную способность, достаточно ориентироваться на заводскую маркировку. Но если такая необходимость все же возникла (например, есть подозрение, что кто-то грубо чистил жиклеры стальной проволокой), то следует иметь в виду, что цифры маркировки показывают количество кубических сантиметров изооктана, протекающего через жиклер за минуту при высоте напора 500 мм.

Изооктан в большинстве случаев взять негде, и для точного контроля можно применять воду с высотой напора 1000 мм (рис. 24), а для пересчета пользоваться приведенным графиком (рис. 25). Кроме того, надо отметить, что проливка изо-отканом дает результат, в численном выражении близкий к диаметру отверстия, обозначенному сотыми долями миллиметра (как у прежних моделей карбюраторов ДААЗ).

Приблизительно, для общей ориентировки, эти маркировки можно считать идентичными.

ИСПОЛЬЗОВАНИЕ ГАЗОАНАЛИЗАТОРОВ ДЛЯ ДИАГНОСТИКИ СИСТЕМ ПИТАНИЯ И ЗАЖИГАНИЯ

При работе двигателя состав отработавших газов является точным отражением протекания процесса сгорания рабочей смеси в цилиндрах. Любые изменения в условиях сгорания, вызванные нарушением работы карбюратора, системы зажигания или другими причинами, немедленно отражаются на составе отработавших газов, что позволяет быстро и без разборки каких-либо узлов проводить диагностические работы.

В последнее время автомобильные газоанализаторы становятся неотъемлемой принадлежностью даже малых постов автосервиса и поэтому имеется возможность использовать их не только для проведения классических регулировочных работ по обеспечению норм на выброс токсичных веществ, но и для более «тонких» операций по диагностике систем питания и зажигания.

В практике автосервиса в прошлом наибольшее распространение имели газоанализаторы, рассчитанные на измерение содержания оксида углерода (СО). В последние годы в связи с введением норм на выброс не только этого компонента отработавших газов, но и углеводородов (СН), появились комплексные приборы для измерения СО и СН. Таким прибором является, например, отечественный ГИАМ-21. Большое число газоанализаторов зарубежного производства обеспечивает возможность оценивать также содержание в отработавших газах продукта полного сгорания топлива, т.е. нетоксичного углекислого газа (COg).

Все современные автомобильные газоанализаторы являются чисто электрическими приборами, позволяющими оценить содержание отдельных компонентов в отработавших газах без использования в них каких-либо химических реакций в прямом смысле этих слов. Большинство из них работает по принципу измерения степени поглощения инфракрасного (теплового) излучения отдельными вышеперечисленными компонентами отработавших газов. Для этого в газоанализаторах имеется один или несколько инфракрасных излучателей, а также приемников (детекторов) этого излучения. Между излучателем и приемником располагаются измерительные трубки с прозрачными торцевыми окнами, через которые проходят тепловые лучи. В измерительные трубки подается исследуемый газ и по степени снижения интенсивности прошедшего через трубку теплового потока, регистрируемого детектором, судят о содержании того или иного компонента в газовой смеси. Кроме измерительных трубок, в приборе имеются одна или несколько эталонных трубок, в которых содержится чистый воздух или специальная газовая смесь. При этом происходит непрерывное сравнение степеней поглощения инфракрасного излучения в исследуемом и эталонном газах, и по величине этой разницы за счет соответствующих преобразований электрических сигналов передается на показывающий прибор информация о содержании того или иного компонента в отработавших газах.

Вследствие используемого в газоанализаторах «теплового» способа измерения содержания компонентов отработавших газов прибор перед началом измерений должен быть достаточно прогрет. Кроме того, поступающие в измерительные трубки отработавшие газы должны быть очищены от сажи и твердых частиц, иначе, прибор вследствие загрязнения стенок трубок и их прозрачных окон быстро изменит свою первоначальную настройку (так называемую «тарировку») и начнет давать ошибочные показания. По этой же причине поступающие в газоанализатор отработавшие газы должны быть освобождены от постоянно присутствующих в них капель воды. Для этого на газоотборной трубке прибора устанавливаются сменные фильтры и водоотделители. И, наконец, для прокачки отработавших газов через измерительные трубки прибора служит встроенный насос.

На рис.27 приведена типичная зависимость содержания основных компонентов отработавших газов от состава горючей смеси на обычном автомобильном двигателе с искровым зажиганием. Как мы видим, в области весьма богатой горючей смеси при составе смеси значительно меньше а = 1 в отработавших газах содержится много СО, крайне мало Og, относительно мало COg, а также некоторое количество СН.

По мере дальнейшего обеднения состава смеси, т.е. уменьшения в топливовоз-душной смеси количества топлива, содержание СО в отработавших газах достигает своих минимальных значений (0,2-0,05%), содержание COg вследствие «разбавления» избыточным количеством воздуха начинает уменьшаться, и одновременно начинается рост содержания в отработавших газах находящегося в избытке и неизрасходованного при горении топлива свободного кислорода. При небольшой степени обеднения воспламенение и горение в цилиндрах двигателя горючей смеси происходит без «пропусков» и содержание в отработавших газах несгоревшего топлива, т.е. углеводородов, минимально (100-200 ppm).

При достижении значительного обеднения состава смеси в двигателе начинаются пропуски воспламенения, сопровождающиеся резким ростом содержания в отработавших газах СН. При этом содержание СО уже практически не изменяется, СОа продолжает падать, а содержание кислорода (0^) вследствие уменьшения количества нормально сгоревшего топлива растет.

Таким образом, при помощи газоанализатора опытный ремонтник может видеть полное отражение картины происходящего в двигателе процесса сгорания и делать точное заключение о причине его нарушения. Образно говоря, хороший газоанализатор является «глазами» автомеханика, которыми он заглядывает прямо в цилиндр двигателя.

Двигатель с приведенным характером изменения СО и СН на холостом ходу при условии правильной установки угла опережения зажигания будет обеспечивать одновременно и низкий расход топлива.

Нужно сказать, что выброс СН в значительной степени зависит от величины искрового промежутка в свечах зажигания, а также от угла опережения зажигания. Наименьшее количество пропусков воспламенения и соответственно наименьший выброс углеводородов наблюдается при величине искрового зазора около 1 мм. При большей величине этого параметра могут наступать пробои в высоковольтных проводах и повышенные утечки тока высокого напряжения, особенно в сырую погоду. При меньшей величине зазора повышается число циклов с «вялым» начальным периодом сгорания вследствие меньшего объема горючей смеси, находящейся в «зоне влияния» короткой по длине искры. В обоих случаях наблюдается повышение выброса углеводородов.

Современные электронные системы зажигания, обеспечивающие энергию искрового разряда 50-75 мДж, позволяют практически полностью выбрать все имеющиеся здесь резервы.

Никак заметно не влияет на выброс углеводородов установка свечей с тремя и более боковыми электродами: их роль состоит только в том, чтобы повысить срок службы свечи за счет более медленного эрозионного износа каждого из электродов, т.к. каждый раз искра образуется только на каком-либо одном из них, где в данный момент сопротивление среды газов оказывается наименьшим. Точно так же молния сама ищет и находит только одно наиболее благоприятное с точки зрения сопротивления среды место пробоя.

Угол опережения зажигания в значительной степени влияет на процесс сгорания топлива в двигателе, а, следовательно, и на выброс углеводородов. Как правило, уменьшение угла опережения зажигания сопровождается снижением выброса СН. Это происходит за счет улучшения условий для догорания топлива в выпускном трубопроводе (при этом происходит рост температуры отработавших газов). Только чрезмерно «позднее» зажигание (далеко после ВМТ) может привести к нарушению воспламенения смеси в цилиндре и вызовет рост СН. Установка более «раннего» зажигания, даже не выходя за пределы наиболее экономичной работы двигателя, всегда приводит к росту СН. В этом проявляется неожиданный для многих вывод: наибольшая полнота сгорания топлива совсем не обязательно предопределяет достижение наибольшей топливной экономичности двигателя! Наоборот, для достижения меньшего выброса токсичных веществ, в частности, для повышения полноты сгорания топлива, т.е. снижения выброса СН, разработчики автомобильной техники очень часто сознательно жертвуют топливной экономичностью!

Этот вывод иллюстрируется известным всем способом подключения вакуумного регулятора опережения зажигания: через отверстие в стенке корпуса дроссельных заслонок, выше кромки закрытой дроссельной заслонки. При этом на холостом ходу угол опережения зажигания определяется только начальной установкой распределителя, без влияния вакуумного регулятора. Такой угол опережения зажигания, обеспечивая небольшой выброс СН, является неоптимальным с точки зрения достижения топливной экономичности. Подключив вакуумный регулятор опережения зажигания непосредственно к разрежению за дроссельной заслонкой и отрегулировав на прежний уровень возросшую частоту вращения коленчатого вала на холостом ходу, мы достигнем повышения топливной экономичности на несколько процентов, однако увеличим содержание СН на холостом ходу по крайней мере вдвое.

Необходимо отметить, что любые манипуляции с зажиганием, не приводящие к выходу СН за пределы 1000 ppm, практически не влияют на изменение выброса СО. Лишь только значительные пропуски воспламенения горючей смеси приводят к разбавлению отработавших газов топливовоздушной смесью и, как следствие, снижению концентрации всех токсичных компонентов, кроме СН.

Рост выброса СН, вызванный ухудшением условий воспламенения горючей смеси, в наибольшей степени проявляется при обедненных регулировках карбюратора и становится менее заметен при более богатых регулировках. Иными словами, нарушения работы двигателя, связанные с состоянием системы зажигания, а также с ухудшением условий воспламенения горючей смеси, в наиболее выраженном виде проявляются при малом значении содержания СО и «смазываются» при большом содержании СО в отработавших газах. Это всегда нужно иметь в виду, делая заключение о вероятной причине неисправности.

Отклонение от приведенной на рис. 28 зависимости содержания СО, связанное с изменением состава приготавливаемой карбюратором горючей смеси, приводит либо только к повышению расхода топлива, либо еще и к ухудшению ездовых качеств автомобиля. В первом случае это бывает связано с излишним обогащением смеси, во втором, с ее переобеднением.

На рис.29 показаны возможные характерные отклонения зависимости содержания СО по частоте вращения коленчатого вала на холостом ходу от нормальной кривой (1).

Причиной первого дефекта чаще всего является общее переобогащение регулировки дозирующих систем карбюратора, связанное либо с засорением воздушных жиклеров, в том числе воздушного жиклера системы холостого хода, либо с установкой топливных жиклеров слишком большого сечения. Вероятной причиной этого, а также и второго дефекта, может быть также чрезмерное повышение уровня топлива.

Второй дефект чаще всего бывает вызван переобогащением регулировки переходной системы, т.е. по сути слишком большим сечением топливного жиклера системы холостого хода, или, теоретически, слишком малым сечением ее воздушного жиклера.

Третий дефект бывает вызван чрезмерно обогащенной регулировкой главной дозирующей системы первой камеры вследствие слишком большого сечения ее топливного жиклера или слишком малым сечение ее воздушного жиклера.

Четвертый дефект свидетельствует о чрезмерно обедненной регулировке карбюратора, чаще всего из-за слишком низкого уровня топлива в поплавковой камере, или установки топливных жиклеров слишком малого сечения.

Оценить регулировку карбюратора при полном открытии дроссельной заслонки, определяющей динамические и мощностные показатели двигателя, можно либо непосредственно в дорожных условиях при движении автомобиля на подъем, чтобы его скорость не превысила безопасную величину, либо, что гораздо удобнее, на нагрузочном стенде с беговыми барабанами. В первом случае потребуется газоанализатор, имеющий питание от автомобильной бортсети 12 В, во втором случае подойдет любой с питанием от сети переменного тока.

Однако измерения содержания компонентов в отработавших газах имеют смысл лишь только в том случае, если есть уверенность в герметичности системы выпуска. Любой заметный «подсос» воздуха в систему выпуска, вполне вероятный из-за пульсации давления отработавших газов при работе двигателя, приведет к искажению показаний газоанализатора и не позволит сделать правильное заключение о состоянии двигателя.

При помощи дополнительного измерения содержания в отработавших газах COg или Og можно обнаружить наличие такого «подсоса» воздуха по нарушению баланса концентраций компонентов отработавших газов. Так, например, двигатель работает на богатой смеси при содержании СО около 2%, однако вследствие подсоса воздуха содержание СО в месте отбора газов в анализатор составляет всего 1%, т.е. произошло разбавление отработавших газов воздухом вдвое. Это разбавление легко может быть установлено по падению содержания СО^ тоже вдвое, т.е. с обычных для этого состава смеси 12-13 % и роста содержания 0^ с практически нулевого значения для этого же состава смеси до 10-11%, т.е. половине его содержания в чистом воздухе, составляющего немногим более 20%.

Обратясь к графику на рис. 27, можно увидеть, что при значении СО равным 1% вышеуказанные значения COg и Og значительна отличаются от нормальных для этого СО, т.е. что может быть объяснено только не герметичностью выпускной системы. Поэтому перед началом диагностических измерений всегда имеет смысл убедиться в правильном балансе концентраций компонентов отработавших газов, гарантирующем отсутствие недопустимых с точки зрения достоверности получаемых результатов «подсосов» воздуха.
наверх

Источник

Поделиться с друзьями
Практические советы по железу и огороду
Adblock
detector