Коэффициенты динамического сопротивления автомобилей

Содержание
  1. Alexandr667 › Блог › Об обтекаемости советских авто
  2. Комментарии 12
  3. Задачи аэродинамики
  4. Аэродинамические силы
  5. Подъемная сила
  6. Топ-7 худших и лучших машин в мире аэродинамики (41 фото)
  7. Главным показателем аэродинамических свойств автомобиля считается коэффициент лобового сопротивления — Cx. Цифры, которые демонстрируют свежие новинки, еще 10 лет назад казались недостижимыми для обычных, массовых машин.
  8. Аэродинамика для чайников:
  9. Рейтинг худших автомобилей по части аэродинамики
  10. 7. Lada 4×4 / ВАЗ-21213 «Нива». Коэффициент Сх = 0,536
  11. 6. Mercedes-Benz G-класса. Коэффициент Сх = 0,54
  12. 5. Вазовская «классика». Коэффициент Сх = 0,56-0,5
  13. 4. Hummer H2. Коэффициент Сх = 0,57
  14. 3. Jeep Wrangler (поколение TJ). Коэффициент Сх = 0,58
  15. 2. УАЗ «Хантер» / УАЗ-469. Коэффициент Сх = 0,6
  16. 1. Caterham Seven. Коэффициент Сх = 0,7
  17. Рейтинг лучших автомобилей по части аэродинамики
  18. Аэродинамические коэффициенты и лобовая площадь автомобилей

Alexandr667 › Блог › Об обтекаемости советских авто

Когда после десятки (21103 1.5 16 кл) пересел на 2114 со 124 мотором (1.6 16кл), то обратил внимание на то что расход в районе 8 литров и динамика и максималка хуже. Десятка 2001 года ложила стрелу легко и по gps скорость была около 185, точно не помню. Расход был по бортовику 6.3 литра и выше не поднимался.По факту было около 6.5 литра на сотку. На четырке и вес вроде меньше и мотор бОльшего объёма и мощнее по идее, а едет не так и кушает заметно больше. Погнал машину на диагностику, думал может прошить, хотя уже была прошита. Объяснил ситуацию электрику-диагносту. Тот сказал, что для 14-ки это нормальный расход и с десяткой ее не стоит сравнивать, т.к. кузова разные… Вот статейка, которая все это объясняет довольно популярно))))

Коэффициент аэродинамического сопротивления

Коэффициент аэродинамического сопротивления (Cw) — безразмерная величина, отражающая отношение силы сопротивления воздуха движению автомобиля к силе сопротивления движению цилиндра:
Cw = Fauto / Fcylinder,
при условии, что наибольшее поперечное сечение автомобиля равно поперечному сечению цилиндра[источник не указан 1186 дней].
Другими словами, сила сопротивления воздуха, действующая на корпус автомобиля, равна силе, действующей на цилиндр с понижающим коэффициентом Cw:
Fauto = Cx * Fcylinder,
где Cw — безразмерный коэффициент, обычно меньший единицы (от С — coefficient, w — продольная ось цилиндра и автомобиля).
Cw не имеет единицы измерения и действует для всех геометрически подобных тел, вне зависимости от их конкретных размеров.
Чем меньше Cw, тем лучше проработана аэродинамика автомобиля. Для современных автомобилей Cw 26 октября 2014 в 00:25

Комментарии 12

Я хотел донести что твои расчеты неверные и не совпадают с практикой, привел пример, про 2110 и 2105, посчитай почему у них при одинаковой тяговооруженнонности так сильно различаются максимальные скорости и тогда я тебе поверю, Окей? Бери в расчет 21053 с инжекторным мотором 1.5 и 21102 с инжекторным мотором 1.5, максималку в них 150 и 170 соответственно, жду от тебя что нибудь вразумительное

Ребята, про аэродинамику очень много вранья написано!
Якобы Жигули — поганый кирпич, а вот всякие модные дорогие иномарки — супер обтекаемые!
Вот и Приоре нарисовали коэффициент лобового сопротивления — 0,32, а нашим жигулям малюют чуть не 0,56!
.
А теперь момент истины!
.
Итак, Жигули с мотором аж 80 лс может разогнаться всего до 155км/ч.
(я знаю, что вы знаете, что даже копейка с 64лс разгоняется до 160! Но мы берём худший случай для Жигулей!).
.
А Приора с 98лс разгоняется по рассказам пацанофф — до 200км/ч! В лучшем случае для Приоры!
.
Намеренно берём похуже для наших Жигулей, и получше для йихних Приор smile3.gif
.
Площадь поперечного сечения у обоих машин практически одинаковая в силу одинаковых габаритных размеров.
Это сильно упрощает наш анализ!
.
Итак, если бы поставить мотор Приоры 98лс на Жигули, мы получили бы максимальную скорость во сколько раз больше?
Корень кубический из отношения 98лс/80лс. Это 1,07 раза!
То есть 155км/ч х 1,07 = 166км/ч
.
Приора же едет в 200/166=1,205 раза быстрее, значит её лобовое сопротивление в 1,205 раза меньше.
.
Если взять самое лучшее значение коэффициента лобового сопротивления Жигулей Сх=0,46, то у Приоры будет
Сх=0,46/1,205=0,38!

Вы поняли?
Я заведомо взял все числа так, чтобы было похуже для Жигулей и получше для Приоры! И смог натянуть всего лишь 0,38!
Нет никаких 0,32 для Приоры даже близко!
Все табличные сведения во всех интернетах — сплошное враньё!
————————
Теперь посчитаем реальные значения Сх
Для Жигулей:
Мы знаем, что Жигули 2103 разгоняется до 165 (46м/с), есть даже кадры до 170 разгоняли.
Мощность мотора 2103 — 75лс = 55кВт
Эта мощность затрачивается на ветер, и на качение колёс.
Как узнать мощность на качение со скоростью 165км/ч?
Я не измерял, но мне кажется, когда я толкаю свой Жигулёнок, я упираюсь с силой 20кг (200ньютон)
На скорости 46м/с мощность будет 46м/с умножить на 200ньютон = 9200вт.
Вычитаем 9 000вт из 55 000вт и остаётся 46 000вт на преодоление ветра!
Площадь миделя — мне запомнилось число 1,885кв.м. Не помню откуда запомнилось. Для Волги ГАЗ24 приводят 2,277кв.м., а она в 1,15 раза шире.

Допустим мощность качения не 9квт, а допустим 4кВт! Ну пусть наши жигули лёгенько катятся!
Допустим, что и площадь миделя не такая (а какая тогда? Если я возьму бОльше — то Сх станет ещё меньше! А мне кажется, что 1,885 — это сильно заниженное число, но мне оно запомнилось как достоверное число из достоверного источника. Но если я площадь Волги 2,277кв.м поделю на 1,15 то получу 1,98кв.м. А если ширну Жигулей (1,60м) умножу на высоту (1,45м) то получу 2,32кв.м, что неправильно, потому что профиль машины заужен, скошен… В общем, площадь у нас точно не меньше 1,885!

Ну и если я уменьшу мощность качения до 4кВт, то мощность на сопротивление ветра увеличится до 51 000вт! И тогда Сх увеличивается ну аж до 0,44.

Как ещё можно увеличить лобовое сопротивление Жигулей — я не знаю!

Таким же методом вычисляем Сх для Приоры и получаем 0,38 при скорости 190, мощности 98лс, мощности качения 5кВт (скорость больше — больше и мощность)

Вы понимаете, какой вопиющий уровень лжи и клеветы в частности на Жигули во всех интернетах всего мира?! Потому что по факту это был реально очень хороший автомобиль во всех смыслах! по совокупности всех потребительских свойств.

А теперь ещё раз посмотрите в таблицу — Волга и Жигули. Для Волги приводят 0,46, а для Жигулей — 0,52-0,54.
А теперь смотрите: Мощность Волги — 95лс, а максимальная скорость — ну, фактически такая же как у Жигули. Площадь Волги в 1,15 раза больше, и мощность тоже в 95/80= примерно 1,15 раза! А коль скорость у них одинаковая, значит и коэффициент лобового сопротивления у них одинаковый! (у них и форма кузова одинаково выглядит!) Но в таблицах вам намалевали разные цифры! То есть очевидна клевета на Жигули! (Число для Волги нарисовали как раз правдоподобное — у Волги и других недостатков очень много.)

Источник

Движение автомобиля сопровождается многочисленными процессами взаимодействия с окружающим его воздухом. Эти процессы можно объединить в три группы:

Процессы, объединенные в первые две группы, тесно связаны друг с другом. Так, например, поле скоростей потока в моторном отсеке непосредственно зависит от поля обтекания внешней поверхности автомобиля. Оба поля должны рассматриваться совместно, оба они являются объектом изучения автомобильной аэродинамики. Потоки внутри двигателя и трансмиссии, напротив, не связаны с процессом обтекания автомобиля; они связаны лишь с механикой работы этих агрегатов. Такие потоки не относятся к аэродинамике автомобиля.

Задачи аэродинамики

Обтекание внешним потоком воздуха приводит к возникновению сил и моментов, действующих на автомобиль, которые весьма существенно влияют на потребляемую мощность и курсовую устойчивость. Долгое время автомобильная аэродинамика занималась исключительно этими двумя эффектами обтекания. В последнее время круг задач расширился, и решается ряд новых проблем:

Аэродинамические силы

На рисунке 1 наглядно показано поле обтекания автомобиля. Струйки дыма, направленные в плоскости продольного осевого сечения, показывают характер линий тока в этой плоскости при симметричном обтекании. Такое обтекание имеет место при движении автомобиля в условиях отсутствия ветра (штиль) или когда направление ветра точно совпадает с линией движения (попутный ветер, встречный ветер). С помощью такой картины линий тока можно идентифицировать ряд основных процессов обтекания.

Читайте также:  Можно ли тянуть автомобиль на автомате

Обращает на себя внимание явление отрыва потока в задней части автомобиля. В то время, как линии тока для обширных участков контура автомобиля даже в областях более резких изломов контура проходят плавно, от задней кромки крыши поток отрывается. Образуется большая зона вихревого следа, хорошо видимая на рисунке 2 благодаря тому, что дым (как и на рисунке 1) не прилегает к контуру автомобиля, а устремляется в оторвавшийся поток.

Сопротивление воздуха W, а также другие компоненты результирующей аэродинамической силы и их моменты возрастают в квадратичной зависимости от скорости движения автомобиля:

Для легкового автомобиля среднего класса доля сопротивления воздуха в суммарном сопротивлении движению при скорости VF = 100 км/ч составляет уже 75—80 %. Следовательно, уменьшая сопротивление воздуха, можно значительно улучшить экономические показатели автомобиля. Поэтому, как и прежде, главной задачей аэродинамики автомобиля является уменьшение сопротивления воздуха до минимально возможного значения, независимо от того, является ли целью проектирования повышение максимальной скорости или снижение расхода топлива.

Если записать уравнение (1) для силы сопротивления воздуха в полном виде, имеем:

Таким образом, аэродинамическое сопротивление автомобиля W, с одной стороны, определяется габаритными размерами автомобиля, выраженными в виде площади фронтальной проекции А, с другой стороны, его формой, аэродинамическое качество которой определяется коэффициентом аэродинамического сопротивления cW. Как правило, размеры автомобиля задаются предъявляемыми к нему требованиями, и уменьшение сопротивления воздуха сводится к уменьшению коэффициента cW.

Подъемная сила

Сравнивая (см. рисунок 1) расстояние между линиями тока в сечении, расположенном перед автомобилем, с расстоянием между линиями тока над крышей автомобиля, можно получить представление о действующей на него подъемной силе. Малое расстояние между линиями тока означает высокую скорость потока; а она, в свою очередь, связана с малым статическим давлением. По разности давления над крышей и под днищем автомобиля можно вычислить приложенную в плоскости симметрии перпендикулярно к направлению движения силу, которая называется подъемной силой.

Как правило, подъемная сила действует вверх, т.е. она стремится приподнять автомобиль и тем самым уменьшить эффективные нагрузки на колеса. Эта сила связана с продольным аэродинамическим моментом (называемым также моментом галопирования), который приводит к тому, что уменьшение нагрузок на колеса передней и задней осей различно. В области скоростей, характерных для массового легкового автомобиля, т.е. при VF

Источник

Топ-7 худших и лучших машин в мире аэродинамики (41 фото)

Главным показателем аэродинамических свойств автомобиля считается коэффициент лобового сопротивления — Cx. Цифры, которые демонстрируют свежие новинки, еще 10 лет назад казались недостижимыми для обычных, массовых машин.

Мы выбрали лучшие и худшие модели с точки зрения аэродинамики. В нашу подборку вошли только серийные легковые автомобили современности. То есть те, которые выпускаются сейчас либо выпускались в последние 15 лет и до сих пор встречаются на дорогах.

Для тех, кто хочет разобраться в вопросах аэродинамики подробнее, ниже мы приводим небольшой «ликбез», объясняющий, как рассчитывают аэродинамические коэффициенты и какие еще показатели, кроме Сх, имеют значение.

Аэродинамика для чайников:

Что такое коэффициент аэродинамического сопротивления Сх? Если выражаться предельно упрощенно, этот показатель демонстрирует, насколько автомобиль легче «прорезает» воздух по сравнению с условным цилиндром, площадь поперечного сечения которого равна максимальной площади сечения автомобиля. Еще это называют площадью фронтальной проекции машины, или коротко — мидель. У условного цилиндра Cx равен единице (в реальности точная цифра будет зависеть от длины цилиндра, но для простоты объяснения мы сейчас от этого абстрагируемся).

Cx показывает лобовое сопротивление — то есть по продольной оси «Х». Соответственно, есть еще Cy и Cz, но в случае с автомобилем они играют гораздо меньшую роль.

Как от формы тела меняется Сх? Все дело в создаваемых завихрениях. Если вместо цилиндра взять плоский щит такого же диаметра, то его сопротивление воздуху будет на 17-20% больше, чем у цилиндра (Cx щита = 1,17-1,2) за счет завихрений позади щита. Там создается зона разреженного воздуха, и она сама по себе как бы «тянет» щит назад. То же самое происходит и с автомобилем.

Одна из лучших форм с точки зрения аэродинамики — капля. У нее Сх будет равен лишь 0,04. То есть капля на 96% более обтекаема, чем цилиндр при равенстве диаметров. Это получается потому, что сзади у капли — длинный сужающийся хвост, а спереди — округлый «обтекатель». Они обеспечивают минимум завихрений. Создатели первых аэродинамичных автомобилей середины прошлого века экспериментировали именно с каплевидными формами кузова (вспомните, какой «хвост» у «Победы»).

У современных легковых автомобилей Сх чаще всего составляет около 0,3. Это означает, что автомобиль на 70% эффективнее с точки зрения аэродинамики, чем цилиндр.

Реальная сила, с которой воздух сопротивляется движению автомобиля, зависит, разумеется, от скорости. Причем с ростом скорости аэродинамическое сопротивление возрастает квадратично. Это влияет в первую очередь на расход топлива — и чем выше скорость, тем больше влияет. Само собой, и максимальная скорость тоже ограничена не только мощностью мотора, но и аэродинамическими особенностями автомобиля.

Создатели автомобилей, кроме обтекаемости машины в продольном направлении, также заботятся об обтекаемости сбоку и о подъемной силе, действующей на автомобиль.

Подъемная сила — это вторая по значимости проблема в аэродинамике автомобилей помимо лобового сопротивления воздуха. Дело в том, что абсолютно любой автомобиль по своим формам похож на профиль крыла самолета: снизу плоский, а сверху — выпуклый. Это означает, что воздух, протекающий над автомобилем, совершает более длинный путь, чем воздух снизу. И скорость потока снизу выше, чем сверху. Из-за этого над машиной появляется зона разреженного воздуха, а под ней, напротив, зона повышенного давления. Чем выше скорость, тем сильнее воздух снизу приподнимает автомобиль.

Разного рода аэродинамические элементы вроде антикрыльев, спойлеров, сплиттеров, диффузоров и накладок на днище призваны создать прижимную силу. В случае с гоночными болидами удается этого достичь в полной мере: чем выше скорость, тем сильнее прижимается машина к земле. Это увеличивает сцепление колес с дорогой и делает автомобиль более стабильным на высоких скоростях.

Тут еще надо упомянуть о таком явлении, как граунд-эффект — за счет особой формы днища и применения аэродинамических «юбок» вдоль бортов конструкторы гоночных машин научились в свое время создавать под машиной зону разреженного воздуха, за счет чего автомобиль «липнет» к дороге. Этим прежде пользовались конструкторы Формулы 1, однако в 80-е годы граунд-эффект в Королевских гонках был запрещен. С тех пор у всех болидов одинаковое ровное днище.

В случае с гражданскими автомобилями о создании прижимной силы говорить не совсем корректно. За счет аэродинамических ухищрений удается добиться снижения подъемной силы, но все равно машины на высоких скоростях немного «взлетают», колеса разгружаются и стабильность падает.

Подъемная сила и сила лобового сопротивления это еще не все. Важное значение имеют момент крена и поворачивающий момент (измеряются при повороте автомобиля под углом к воздушному потоку). Эти показатели отражают склонность машины реагировать на боковые порывы ветра. Чем меньше эти цифры, тем лучше машина держит скоростную прямую и меньше отклоняется от траектории, например, при проезде встречной фуры.

Еще один важный показатель — опрокидывающий момент. Положительные значения этих сил говорят о том, что с ростом скорости передние колеса разгружаются, а задние — нагружаются; отрицательные — наоборот. В идеале — должен быть близок к нулю.

се эти показатели измеряются «вживую» путем продувки автомобилей и макетов в аэродинамической трубе на разных скоростях воздушного потока и измерения реальных сил, действующих на кузов.

Аэродинамическая труба, позволяющая продувать полномасштабные макеты машин и реальные автомобили — это очень большое и сложное сооружение. Скажем, труба на «АвтоВАЗе» имеет длину 67,5 м, а ширину — 29 м. Воздух в ней проходит путь в 150 метров. Поток создается вентилятором, диаметр которого 7,4 м. Максимальная скорость воздушного потока в трубе — 216 км/ч.

Рейтинг худших автомобилей по части аэродинамики

Автомобилей с ужасной аэродинамикой в мире немало, но по понятным причинам многие производители не раскрывают официальные цифры аэродинамических показателей. Более того — у множества моделей они вообще никогда не измерялись ни производителем, ни независимыми исследователями. Мы выбрали семерку наиболее показательных машин, по которым данные известны и достоверны.

Читайте также:  Люди которые не могут водить автомобиль

7. Lada 4×4 / ВАЗ-21213 «Нива». Коэффициент Сх = 0,536

В том, что классическая «Нива» не умеет ездить быстро, вина не только слабого 81-сильного мотора, но и, конечно, аэродинамики. «Максималка» у этого автомобиля — всего лишь 137 км/ч. Впрочем, для машины родом из 70-х годов прошлого века это не так плохо. Владельцы «Лады 4х4» могут утешать себя тем, что Гелендваген, являющийся практически ровесником тольяттинского внедорожника, по обтекаемости еще хуже.

6. Mercedes-Benz G-класса. Коэффициент Сх = 0,54

Те, кто говорит, что у Гелендвагена аэродинамика кирпича, все-таки сильно сгущают краски. У тела кубической формы Сх равен 1,05, а у Мерседеса G-класса этот показатель вдвое меньше. Гелендваген очень сильно страдает от своей аэродинамики: какой бы мощный мотор ни ставили на эту модель, ее «максималка» оставляет желать лучшего. Даже безумная версия G 65 AMG, развивающая 630 л.с., способна набирать всего лишь 230 км/ч.

5. Вазовская «классика». Коэффициент Сх = 0,56-0,5

В зависимости от модели аэродинамика тольяттинских автомобилей классического семейства немного различается. Наши коллеги из «Авторевю» в 2000 году продули «семерку» и получили результат 0,546. Хуже всего дела у «копейки» — аж 0,56. Такие данные приводит учебник «Автомобили и тракторы. Основы эргономики и дизайна», изданный МАМИ в 2002 году. «Шестерка», по тем же данным, имеет коэффициент 0,54. А лучше всех себя показал универсал 2104 — 0,53.

4. Hummer H2. Коэффициент Сх = 0,57

Многие и не догадываются, что Hummer на трассе с трудом может угнаться за современной малолитражкой, включая Lada Granta. Американский внедорожник не способен ехать быстрее 160 км/ч, в то время как тольяттинской модели покоряется скорость в 183 км/ч. Понятно, что Hummer более чем вдвое тяжелее, но так и мотор у него какой! Выпускавшийся с 2002 по 2009 годы внедорожник имеет под капотом могучий V8 рабочим объемом 6,2 л (393 л.с.), но при Cx = 0,57 он просто не способен нормально «продираться» сквозь толщу воздуха.

3. Jeep Wrangler (поколение TJ). Коэффициент Сх = 0,58

Автомобиль, который произошел от армейского «Виллиса» образца 1941 (!) года, принципиально чужд высоким скоростям. Конечно, современная машина не имеет общих кузовных панелей с Джипом времен Второй мировой войны: Wrangler гораздо крупнее и имеет более обтекаемые формы. Но это не сильно помогает. Хуже всего дела обстоят у двухдверной модификации с открытым верхом (Сх = 0,58). А лучше всего, как можно догадаться, у длиннобазной пятидверки с жесткой крышей — Jeep Wrangler Unlimited. Эта версия имеет Cx, равный 0,495.

2. УАЗ «Хантер» / УАЗ-469. Коэффициент Сх = 0,6

Выпускающийся сейчас «Хантер» мало отличается от УАЗа-469 образца 1972 года, и потому не мог не попасть в наш антирейтинг. Данные по УАЗу-469 приводит вышеупомянутый учебник МАМИ. Доверять этим сведениям вполне можно: первый в списке авторов — профессор Игорь Степанов, много лет занимающийся именно аэродинамикой, а также Анатолий Карунин — в прошлом заведующий кафедрой «Автомобили», а ныне ректор МГТУ «МАМИ».

1. Caterham Seven. Коэффициент Сх = 0,7

Как ни странно, у этого спорткара дела с аэродинамикой обстоят гораздо хуже, чем у угловатых внедорожников. Дело в том, что перед нами фактически разработка 50-х годов — Lotus Seven. Но самое интересное, что ужасная аэродинамика ничуть не мешает этой модели отлично проявлять себя на треке: дело в том, что сухой вес Caterham — лишь 575 кг. Поэтому при мощности в 260 л.с. (с «топовым» мотором) эта модель может набирать 250 км/ч. Ну а разгон до 100 км/ч и вовсе суперкаровский — 3,1 секунды.

Рейтинг лучших автомобилей по части аэродинамики

Борьба за улучшение аэродинамики машин сейчас обострилась как никогда: многие автопроизводители идут буквально «колесо в колесо». Поэтому на некоторых строчках нашего рейтинга расположились не одна и не две, а сразу несколько моделей (и в некоторых случаях это еще не полный список!). По каждой из моделей приведены данные той модификации, которая является лучшей по значению Сх.

Места с седьмого по пятое делят сразу два десятка машин, так что отдельно комментировать каждую из них мы не будем. Ну а начиная с четвертого места — то есть с Cx = 0,23 — остановимся на каждой модели.

Источник

Аэродинамические коэффициенты и лобовая площадь автомобилей

Примечание: cx, Н·с 2 /м·кг; кw, Н·с 2 /м 4 – аэродинамические коэффициенты ;

F, м 2 – лобовая площадь автомобиля.

Для автомобилей, имеющих высокие скорости движения, сила Рw имеет существенное значение. Сопротивление воздушной среды определяется относительной скоростью автомобиля и воздуха, поэтому при её определении следует учитывать влияние ветра.

Точка приложения результирующей силы сопротивления воздуха Рw (центр парусности) лежит в поперечной (лобовой) плоскости симметрии автомобиля. Высота расположения этого центра над опорной поверхностью дороги hw оказывает значительное влияние на устойчивость автомобиля при движении его с высокими скоростями.

Увеличение Рw может привести к тому, что продольный опрокидывающий момент Рw·hw настолько разгрузит передние колеса машины, что последняя потеряет управляемость вследствие плохого контакта управляемых колес с дорогой. Боковой ветер может вызвать занос автомобиля, который будет тем более вероятен, чем выше расположен центр парусности.

Попадающий в пространство между нижней части автомобиля и дорогой воздух создает дополнительное сопротивление движению за счет эффекта интенсивного образования вихрей. Для снижения этого сопротивления желательно передней части автомобиля придавать конфигурацию, которая препятствовала бы попадание встречного воздуха под его нижнюю часть, которая по возможности должна быть плоской.

По сравнению с одиночным автомобилем коэффициент сопротивления воздуха автопоезда с обычным прицепом выше на 20…30%, а с седельным прицепом – примерно на 10%. Антенна, зеркало внешнего вида, багажник над крышей, дополнительные фары и другие выступающие детали или открытые окна увеличивают сопротивление воздуха.

При скорости движения автомобиля до 40 км/ч сила Рw меньше силы сопротивления качению Рf на асфальтированной дороге. Свыше 100 км/ч сила сопротивления воздуха представляет собой основную составляющую тягового баланса автомобиля.

Грузовые автомобили имеют плохо обтекаемые формы с резкими углами и большим числом выступающих частей. Чтобы снизить Рw, на грузовиках устанавливают обтекатели и другие приспособления.

Сопротивление ускорению ( Рj ). При разгоне (замедлении) автомобиль преодолевают силы инерции поступательно движущихся масс, а также моменты инерции ускоренно вращающихся масс.

Сила инерции Рjп поступательно движущейся массы автомобиля приложена в центре его массы и определяется по формуле:

Рjп = m(dv/dt) = (G/g)(dv/dt),

Это уравнение справедливо, когда все части машины движутся только поступательно.

В действительности значительные сопротивления приходится также преодолевать на разгон вращающихся деталей двигателя и трансмиссии, а также колес. В связи с этим при определении полной силы сопротивления разгону Рj вводится коэффициент β (иногда его обозначают δвр), учитывающий влияние моментов инерции вращающихся частей:

Очевидно, что коэффициент β всегда больше единицы.

Для практических расчетов можно пользоваться зависимостью:

Сила тягового (крюкового) сопротивления Ркр прицепных повозок определяется величиной сопротивления прицепных машин. Сила сопротивления прицепов при выполнении машиной транспортных работ определяется формулой:

Уравнение тягового баланса автомобиля

— сила сопротивления качению Рf ;

— сила сопротивления подъему Рh , которая является составляющей силы тяжести G автомобиля, параллельной его оси (G·sinα);

В общем случае тяговый баланс автомобиля отображают следующей зависимостью:

Касательную силу тяги при установившемся движении подсчитывают как частное от деления ведущего момента на динамический радиус rд ≈ rк (радиус качения) ведущего колеса:

где Мк – крутящий момент двигателя;

Если написать уравнение силового баланса в виде:

то выражение в правой части уравнения показывает избыток силы тяги, который остается после учета затрат на преодоление сопротивления качению и воздуха, и может быть израсходован на преодоление подъема или разгона. Его называют запасом тяги и обозначают Ри. Следовательно, уравнение тягового баланса можно записать в виде:

При установившемся движении по горизонтальной дороге с максимальной скоростью тяговая сила расходуется полностью на преодоление сопротивления воздуха и качения:

Читайте также:  Какие прицепы можно эксплуатировать на легковом автомобиле

Если автомобиль используется в качестве тягача, то в уравнение тягового баланса необходимо учитывать усилие на крюке Ркр.

Уравнение тягового баланса применяется в теории автомобиля для определения скорости движения при тех или иных эксплуатационных условиях.

Тяговые возможности автомобиля удобно оценивать с помощью графической интерпретации тягового баланса. Наибольший интерес представляют максимальные значения тяговой силы, реализуемые на различных передачах и при различных скоростях движения. Очевидно, что они могут быть получены при работе двигателя с максимально возможной подачей топлива. График, показывающий изменение касательной силы тяги в функции скорости движения автомобиля, носит название графика тягового баланса автомобиля или тяговой характеристики (рис.1).

Точки пересечения кривой Рк с линией суммарного сопротивления (Рfw) соответствуют равенству этих сил, то есть возможности движения автомобиля с максимальной скоростью, равной величине vмах. Для снижения скорости водитель должен уменьшить подачу топлива, снизить Ме двигателя. Если дорожные условия изменились (например, сила сопротивления качению возросла с Рf1 до Рf2 ), то при полной подаче топлива скорость автомобиля снижается и соответствует точке пересечения кривых Рк и Рf2. Точка перегиба кривой Рк на рис.1 соответствует скорости, при которой автомобиль преодолевает максимальное сопротивление, развивая тяговое усилие Рк мах. При включении низшей передачи касательная сила тяги Рк увеличивается, и автомобиль может преодолевать большие сопротивления.

Рис.1. Тяговая характеристика автомобиля.

Мощностной баланс автомобиля

Распределение мощности двигателя по отдельным видам сопротивлений носит название мощностного баланса и может быть представлено в виде следующего уравнения:

где ηт, vКПД трансмиссии и скорость движения автомобиля.

Мощность, потерянная в трансмиссии машины, может быть определена как:

Потери мощности на самопередвижение машины (мощности сопротивления качению) определяется по формуле:

где Рf — сила сопротивления качению;

Мощность сопротивления подъему может быть определена по формуле:

При движении под уклон величина Nh берется со знаком минус.

Мощность сопротивления разгону определяется так:

где Рj – сила сопротивления разгону;

В случае замедленного движения Nj берется со знаком минус.

При движении автомобиля возникают различные сопротивления, величина которых зависит от эксплуатационных и конструктивных факторов (см. предыдущий параграф). На преодоление сопротивлений расходуется определенная мощность двигателя, что непосредственно влияет на производительность автомобиля.

Пример расчета и построения диаграммы мощностного баланса автомобиля.

Выше отмечалось, что мощностной баланс автомобиля представляет собой зависимость мощности Nк на колесах автомобиля для всех передаточных отношений iкп в коробке переключения передач, мощности сопротивлений качению и воздуха от скорости движения машины v.

.

В таблице 3 в качестве примера представлены данные расчета параметров мощностного баланса легкового автомобиля типа ВАЗ- 2109 (с 5-искоростной КП: iкп= 3,636; 1,950; 1,357; 0,941; 0,748) для двух вариантов дорожных условий (сухое асфальтовое покрытие f01 =0,015 и твердая грунтовая дорога f02 = 0,03).

Величины коэффициента сопротивления качению для различных скоростей движения автомобиля подсчитаны по зависимости и приведены в таблице 2.

км/ч
f1 0,015 0,017 0,020 0,023 0,028 0,034 0,042
f2 0,030 0,034 0,040 0,046 0,056 0,068 0,084

Величины максимальных значений скоростей должны совпадать с результатами, полученными из графика мощностного баланса автомобиля.

Рис.2. Диаграмма мощностного баланса автомобиля.

Таблица 3.

для различных передач
1,370 1,370 1,370 1,370 1,370
16,188 16,188 16,188 16,188 16,188
29,282 29,282 29,282 29,282 29,282
33,510 33,510 33,510 33,510 33,510
38,731 38,731 38,731 38,731 38,731
44,684 44,684 44,684 44,684 44,684
46,499 46,499 46,499 46,499 46,499
iкп 3,636 1,950 1,357 0,941 0,748

Самостоятельные работы студентов

Тема: Тяговый баланс автомобиля.

Задание. С учетом опорно-сцепных качеств движителя определить режим движения (штатный или с буксованием) переднеприводного автомобиля массой 1,5 тонны с межосевым распределением веса G1 : G2 = 4 : 6 по мокрой грунтовой дороге (f = 0,03, φ = 0,3) на горизонтальном участке и при подъеме (α = 30 0 ). Сравнить с режимом движения в этих условиях полноприводного автомобиля.

Задание. Определить, какую мощность развивает двигатель грузового автомобиля массой 10 тонн, движущегося на подъеме (α = 30 0 ) по грунтовой дороге (f = 0,03) со скоростью 20 км/ч, при условии, что КПД трансмиссии равен 0,85, а сопротивление воздуха ничтожно мало.

Тягово-скоростные свойства автомобиля

Уравнения тягового и мощностного балансов (глава 2) включают параметры, характеризующие динамические качества автомобиля (ψ, v, dv/dt). Но они неудобны для сравнения между собой автомобилей, имеющих различный вес (массу).

Перенесем силу сопротивления воздуха из правой части уравнения тягового баланса в левую:

Разделим обе части полученного уравнения на полный вес автомобиля G:

В развернутом виде это уравнение имеет вид:

Важным достоинством этого фактора является то, что в условиях установившегося движения численные значения динамического фактора и суммарного коэффициента дорожного сопротивления равны (ψ = D). В этом случае, зная динамический фактор автомобиля, можно сразу определить, какое дорожное сопротивление он может преодолеть.

По определению динамический фактор есть отношение избыточной тяги к полному весу автомобиля, и является обобщенным показателем его динамических свойств:

Как следует из уравнения (1) левая его часть отражает величину избыточной силы тяги, которая преодолевает силу сопротивления качению и силу инерции.

Из уравнения тягового баланса для установившегося движения по горизонтальной дороге следует:

При движении без ускорения на подъем (j = 0):

ψ= f + sinα – коэффициент дорожного сопротивления.

Отсюда следует, чем больше динамический фактор, тем больший подъем может быть преодолен автомобилем:

Для ускоренного или замедленного движения по горизонтальной дороге (α = 0):

Следовательно, чем величина D, тем большее ускорение при прочих равных условиях может развивать автомобиль:

Из выражения (1) следует, что:

Таким образом, за счет использования инерции автомобиля преодолеваемый им подъем может быть увеличен.

Так как касательная сила тяги и сила сопротивления воздуха изменяются в функции скорости, то и динамический фактор зависит от скорости. График, показывающий изменение динамического фактора в зависимости от скорости движения D = f(v) автомобиля на различных передачах, называется динамической характеристикой автомобиля (рис.1). Это основная характеристика автомобиля, отражающая его тягово-скоростные качества.

При построении этой характеристики по оси абсцисс откладывается скорость движения автомобиля, а по оси ординат – динамический фактор в виде десятичной дроби или в процентах. График служит в качестве основного показателя, наглядно характеризующего динамику автомобиля. С его помощью определяют максимальные скорости движения автомобиля на разных участках дороги, предельные величины подъемов, преодолеваемых с установившейся скоростью, величины ускорений, развиваемых автомобилем.

При установившемся движении автомобиля по горизонтальной дороге, когда динамический фактор равен коэффициенту сопротивления качению (D = f ), значения f откладываются по оси ординат динамической характеристики в том же масштабе, что и динамический фактор, в виде десятичной дроби или в процентах.

Отрезки ординат, заключенные междукривыми D и f, представляют собой ту часть динамического фактора, которая может быть использована для разгона автомобиля (запас по динамическому фактору при разгоне).

Максимальное сопротивление качению, которое автомобиль может преодолеть при движении на какой либо передаче, определяется максимальным значением динамического фактора на этой передаче, достигаемым примерно при той же скорости, что и соответствующие Рк mах. В этом случае движение возможно лишь при одной определенной скорости, называемой критической ( vкр ).

Так же как и величина максимальной касательной силы тяги Рφ, максимальное значение динамического фактора ограничивается сцеплением шин ведущих колес автомобиля с опорной поверхностью Dφ. Поэтому все значения динамического фактора, превышающие его возможную величину по сцеплению, которое подсчитывается по формуле:

не могут быть практически реализованы в данных дорожных условиях.

Предельная по буксованию является величина Dφ, которая может иметь место обычно на низшей передаче, когда Рw можно принять равной нулю, а Рк = Рφ mах. При этом:

Dφ = Рφ мах /G =φ ·λ (λ – вес автомобиля, приходящийся на его ведущие колеса). Для полноприводного автомобиля λ =1, поэтому Dφ = φ.

На динамической характеристике автомобиля можно отметить несколько характерных точек, которые часто приводятся в технических характеристиках автомобиля.

vmax – максимальная скорость движения автомобиля по дороге, характеризуемой суммарным коэффициентом дорожного сопротивления ψ = 0,015;

D1 — динамический фактор на прямой дороге при некоторой наиболее употребительной для данного типа автомобиля скорости движения (обычно 0,4…0,5 от vmax);

Приведенные пять характерных точек достаточно полно определяют динамические качества автомобиля.

Источник

Поделиться с друзьями
Практические советы по железу и огороду
Adblock
detector