Коммутаторы напряжения для автомобиля

Содержание
  1. Лада 2105 › Бортжурнал › О принципе работы коммутатора
  2. Принцип работы коммутатора зажигания, какие виды бывают и как проверить неисправность
  3. Что собой представляет и каков принцип работы коммутатора зажигания
  4. Электронный коммутатор зажигания – следующий шаг в развитии
  5. Каким может быть коммутатор системы зажигания
  6. Как определить неисправность коммутатора зажигания
  7. Бесконтактная система зажигания
  8. Основные элементы системы
  9. Чем БСЗ лучше контактной?
  10. Как работает коммутатор
  11. Основные элементы коммутатора
  12. Подключение коммутатора
  13. Как осуществить проверку
  14. Настройка зажигания
  15. Выводы
  16. Устройство автомобилей
  17. Коммутаторы системы зажигания
  18. Назначение и принцип работы коммутатора системы зажигания
  19. Коммутаторы для контактно-транзисторных систем зажигания
  20. Коммутатор ТК102
  21. Коммутаторы для бесконтактных систем зажигания
  22. Коммутатор 13.3734
  23. Коммутаторы с нормируемой скважностью импульсов выходного тока
  24. Коммутатор 36.3734
  25. Коммутатор 42.3734
  26. Достоинства и недостатки различных типов коммутаторов
  27. Контроллеры

Лада 2105 › Бортжурнал › О принципе работы коммутатора

В новую версию МПСЗ я заложил возможность нормировать время накопления энергии в
катушках зажигания и мне стало интересно как, собственно, с этой задачей справляется коммутатор.

В качестве подопытного — коммутатор ВТН 0729.3734.
Когда-то, когда лишь установил самую первую версию 2-х контурного зажигания,
обнаружил аномальный разогрев коммутаторов. После того как коэф. заполнения сигнала был
уменьшен с 83% до 50% (в стандарте 33%), т нагрев уменьшился — я тогда установил
дополнительное охлаждение на коммутаторы и поинтересовался у ВТН как происходит
накопление энергии: исходя из скважности сигнала, либо исходя из абсолютной длины
управляющего сигнала. Ответ подтвердил 2-й вариант. Из этого сделал вывод, что хоть
коэф. заполнения сигнала отличается всего на 17%, в то же время частота сигнала в сравнении
с обычной БСЗ упала в 2 раза, следовательно длина управляющего сигнала в более чем
в 3 раза больше и из-за этого катушки находятся подключены к току так же в более чем в 3
раза дольше — из-за этого и греются коммутаторы.

Сегодня, имея на руках самый простой осциллограф, получил возможность буквально
увидеть как происходит процесс накопления энергии в катушках.

Для этого на базе Arduino был сделан генератор сигнала с возможностью изменения
частоты и скважности и сооружен стенд с коммутатором и катушкой 2108.

Случай 1: симуляция 4000 об/мин на 2-х контурном зажигании. Коэф. заполнения сигнала 50%.
Абсолютное время логической «1» 5 мс.

В первичной обмотке происходят следующие процессы:
1. Непосредственный заряд катушки до 7А, который занял 3 мс.
2. Удержание тока первичной обмотки на 7А (по заявлению производителя).
3. Момент искрообразования (когда на входе в коммутатор 1 меняется на 0).
4. Горение искры — около 2 мс.

Случай 2: симуляция 4000 об/мин на 2-х контурном зажигании. Коэф. заполнения сигнала 30%.
Абсолютное время логической «1» 3 мс.

Все аналогично предыдущему случаю, однако отсутствует момент удержания тех самых
7А в первичной обмотке.

Случай 3: симуляция 4000 об/мин на 2-х контурном зажигании. Коэф. заполнения сигнала 20%.
Абсолютное время логической «1» 2 мс.

А вот в этом случае накопление происходит всего 2 мс.
Горение искры меньше 2 мс. из-за недозаряда.

Из этой информации можно судить об алгоритме работы коммутатора:
1. Катушка заряжается до 7А (по заявлению изготовителя) На накопление энергии уходит около 3 мс.
(для данной катушки при данном напряжении питания)
2. Если длина управляющего сигнала меньше 3 мс — время накопления будет соответствовать
времени входящего сигнала.
3. Если время сигнала больше 3мс, после накопления коммутатор ограничит ток в первичной
обмотке и будет удерживать его на уровне 7А до момента поступления логического 0 на входе.
4. Если логический 0 не придет на протяжении пары секунд, ток через катушку будет плавно отключен.
5. Если напряжение питания будет ниже нормы, время накопления будет больше 3мс, и наоборот.

Для меня особый интерес предоставляет пункт 3 — по сути это паразитный участок алгоритма на
котором происходит потеря энергии, которая выливается в излишний нагрев коммутатора.
Поэтому в своей системе буду делать абсолютное время входящего сигнала (1) в 3мс — это должно
избавить от упомянутого паразитного участка.

Источник

Принцип работы коммутатора зажигания, какие виды бывают и как проверить неисправность

Характерной особенностью автомобиля можно считать его быстрое моральное старение, но долгую жизнь. Самое современное сегодня авто, как минимум через два года будет уже уступать другим, более новым, с улучшенными характеристиками, машинам. Но и сейчас на дорогах встречаются автомобили прошлого века. Поэтому не просто интересно, но порой и необходимо, знать хотя бы в общих чертах, что собой представляют подобные транспортные средства, их устройство, особенности, в том числе и такую вещь, как простой коммутатор зажигания, значительно изменивший возможности машины.

Что собой представляет и каков принцип работы коммутатора зажигания

Ещё на самых первых автомобилях для поджигания горючей смеси использовались системы батарейного зажигания, функциональная схема которой приведена на рисунке

Указанный рисунок позволяет понять, что ее работа основана на принципе самоиндукции. При разрыве цепи протекания тока в обмотке бобины 3, во вторичной наводится высоковольтная ЭДС, вызывающая появление искры на контактах свечи 2. Разрыв цепи вызывается размыканием контактов прерывателя 6.

Не касаясь достоинств или недостатков, следует отметить, что такая схема работала на автомобиле долгое время. И только появление новой элементной базы, дало толчок дальнейшему развитию подобного устройства, сохранив первоначальный принцип его работы.

Электронный коммутатор зажигания – следующий шаг в развитии

Самый простой и напрашивающийся вариант – использование транзисторных ключей для управления токами, протекающими через катушку зажигания. Так появился электронный коммутатор напряжения. Схема подобного простого устройства приведена ниже:

Коммутатор не влияет на первоначальный принцип работы, основанный на электромагнитной индукции. Роль электронных ключей, в качестве которых использованы транзисторы VT1 и VT2, заключается в том, чтобы уменьшить нагрузку на контакты прерывателя S1 и увеличить ток, протекающий через обмотку катушки L1. Следствием такого технического решения стало:

Каким может быть коммутатор системы зажигания

Приведенная выше схема коммутатора – лишь один из вариантов, как может быть реализовано устройство зажигания. Это выполняется с использованием:

Транзисторная схема коммутатора рассмотрена выше, тиристорная схема использует накопление энергии в конденсаторе, а не в электромагнитном поле катушки зажигания. В ходе работы тиристорной системы, при поступлении управляющих сигналов, схема подключает заряженный конденсатор к обмоткам катушки, через которую он и разряжается, вызывая появление искры. Не касаясь достоинств и недостатков, которыми обладает та или иная схема, достаточно сказать, что любое подобное устройство обеспечивает значительное улучшение всех параметров системы зажигания, а коммутатор со временем вытеснил обычное батарейное зажигание.

Однако необходимо отметить и ещё один этап развития системы, и коммутатора в частности. Использование электронных компонентов и введение в конструкцию автомобиля коммутатора, позволило со временем отказаться от контактного прерывателя напряжения и заменить его бесконтактным датчиком. Такая система, в отечественных автомобилях, впервые была применена в машинах ВАЗ, в частности ВАЗ 2108. Подобный принцип работы, когда коммутатор получает сигналы от специального узла, на ВАЗ 2108 реализован с использованием датчика Холла.

При рассмотрении вариантов, каким может быть устройство коммутатора, нельзя обойти вниманием развитие самой системы зажигания. Основной принцип, который реализуется при ее построении – повышение надежности и эффективности работы всей системы. Достигается это применением микропроцессорных систем, использующих показания многочисленных датчиков. Для работы с такими системами требуется, как минимум, двухканальный коммутатор, а в последнее время и отдельная катушка, и коммутатор на каждую свечу.
Такой подход – двухканальный коммутатор (в дальнейшем и многоканальный) позволяет обеспечить:

Читайте также:  Раствор для очистки салона автомобиля

Стоит отметить, что двухканальный коммутатор позволяет избавиться от бегунка.

Как определить неисправность коммутатора зажигания

Введение в конструкцию автомобиля коммутатора зажигания, особенно на отечественных авто семейства ВАЗ, позволило повысить их надежность. И хотя первым серийным автомобилем с электронной системой зажигания был ВАЗ 2108, подобные устройства стали ставиться на многих других машинах, в первую очередь на классику. Однако использование такого достаточно сложного изделия привело к тому, что найти возникающую неисправность, а также проверить и отремонтировать коммутатор стало возможным по большей части только в условиях специализированных центров.
Внешними признаками, свидетельствующими, что появилась неисправность, могут быть:

Самый простой способ выявить неисправность и проверить коммутатор, как уже отмечено, – установить заведомо исправный. Из-за достаточно низкого качества коммутаторов, поступающих на комплектацию автомобилей семейства ВАЗ, в том числе и ВАЗ 2108, водителям приходится возить с собой дополнительные коммутаторы для замены отказавшего. Однако существует и косвенный принцип оценки, позволяющий проверить работоспособность изделия и выявить его неисправность.

Для этого можно воспользоваться показаниями вольтметра в комбинации прибора. Надо включить зажигание, при этом стрелка установится посередине шкалы, а немного погодя качнется вправо (из-за отключения питания катушки при неработающем двигателе). Такое поведение стрелки свидетельствует, что неисправность в коммутаторе отсутствует.
В том случае, когда вольтметра нет, чтобы проверить зажигание, потребуется контрольная лампа. Один ее конец присоединяется на массу, другой – к выходу катушки, соединенному с клеммой 1 коммутатора. Если включить зажигание, то при исправном коммутаторе через некоторое время лампа станет гореть ярче.

Однако, в некоторых случаях, неисправность зажигания не связана с отказом коммутатора. Надо проверить состояние проводов, в первую очередь контакт с массой и состояние разъемов. Также необходимо проверить датчик Холла.

Появление в конструкции автомобиля, в том числе и отечественного ВАЗ 2108, коммутатора напряжения, явилось закономерным результатом развития системы зажигания. Дальнейшим ее улучшением стало использование сначала двухканальных, а затем многоканальных коммутаторов для повышения эффективности работы.
» alt=»»>

Источник

Коммутатор – это электронный компонент для обеспечения работы бесконтактной системы зажигания. Она является переходной между контактной и микропроцессорной. Последняя, наиболее совершенная, позволяет управлять моментом при помощи данных, считываемых с датчиков – кислорода, скорости, оборотов двигателя и других. Но на дорогах все еще немало автомобилей, в которых установлены и контактные прерыватели, и бесконтактные. Поэтому для обслуживания и диагностики нужно знать назначение всех элементов, а также методы поиска неисправностей и их основные признаки. Перед тем как проверить коммутатор, внимательно изучите все детали.

Бесконтактная система зажигания

Всего существует три огромные группы систем – контактная, бесконтактная, микропроцессорная. Первая делится на две подгруппы – контактная и с применением транзистора, работающего в режиме ключа. В конструкции бесконтактной системы зажигания тоже применяются транзисторы. Использоваться активно такая схема стала в начале 80-х годов прошлого века. И она имеет ряд преимуществ, о которых будет рассказано несколько ниже. Схема коммутатора несложная, она может быть реализована как на транзисторах, так и на контроллере.

Но у бесконтактной системы зажигания имеется и много недостатков, если сравнивать ее с микропроцессорной. Последняя позволяет контролировать практически все параметры двигателя. БСЗ делать это не позволяет, также не может она нормально использоваться на инжекторных моторах. Причина устаревания бесконтактной системы заключается не только в развитии электроники и автомобилестроения, но и в принятии жестких мер по обеспечению экологичности двигателей внутреннего сгорания. К сожалению, уменьшить количество вредных веществ в выхлопе позволяет только микропроцессорное управление.

Основные элементы системы

Конечно, первыми стоит указать свечи зажигания. Они установлены в головке блока цилиндров, электроды выходят с внутренней части. Это те элементы, которые позволяют воспламенить топливовоздушную смесь. Но с помощью одних только свечей двигатель работать не сможет. Необходимо контролировать положение коленчатого вала, чтобы знать, в каком положении находятся поршни в цилиндрах.

Для этой цели используется индуктивный датчик, работающий на эффекте Холла. Он входит в конструкцию другого элемента – распределителя зажигания. Датчик выдает импульс, который поступает на коммутатор. Это устройство позволяет слабый сигнал усилить до напряжения в 12 Вольт, чтобы затем подать его на катушку. Катушка – не что иное, как простой трансформатор (повышающий). У него вторичная обмотка имеет большее число витков, нежели первичная. За счет этого происходит повышение напряжения и уменьшение силы тока. Напряжение в БСЗ на свечи подается при значении 30-35 кВ (в зависимости от модели автомобиля).

Чем БСЗ лучше контактной?

Внимательно прочитав предыдущий раздел, можно увидеть, что в системе применен индуктивный бесконтактный датчик Холла. Преимущество очевидно – нет трения и коммутации. Для сравнения обратите внимание на контактную систему. В ней прерыватель коммутирует напряжение, величина которого равна 12 Вольт. Как ни крути, но металлические контакты все время соприкасаются друг с другом, постепенно стираются, покрываются нагаром.

По этим причинам необходимо постоянно следить за прерывателем, регулировать зазор, проводить своевременную замену. БСЗ лишена этих недостатков, поэтому без стороннего вмешательства система работает значительно дольше. Датчик Холла выходит из строя очень редко, как и коммутатор. Это повышает надежность системы, но требуется и соблюдать меры предосторожности, в частности, соединение коммутатора с кузовом должно быть максимально плотным, чтобы обеспечить эффективный теплообмен. Кроме того, БСЗ позволяет улучшить работу двигателя, увеличить, хоть и незначительно, его мощность, наряду с повышением надежности.

Как работает коммутатор

По сути, коммутатор – это простой усилитель сигнала. Можно сравнить даже со сборкой Дарлингтона, которая используется в микроконтроллерной технике для преобразования слабого сигнала с порта выхода до необходимого уровня. Основа этой сборки – полевые транзисторы, работающие в режиме ключа. На них подается рабочее напряжение, на управляющий вывод поступает сигнал, который усиливается и снимается с коллектора.

Коммутатор зажигания имеет практически аналогичную схему работы. Только используется сигнал с датчика Холла. Он имеет три вывода – управление, общий, плюс питания. При появлении в области датчика металлической пластины происходит генерация тока, который подается на вход коммутатора. Далее происходит усиление сигнала, а также подача его на первичную обмотку катушки. Питание всей системы происходит только лишь после включения зажигания (после поворота ключа).

Основные элементы коммутатора

Схема коммутатора достаточно простая, но самостоятельное изготовление этого блока бессмысленно, так как готовый вариант купить окажется намного проще. Монтаж должен выполняться максимально грамотно, иначе работа устройства окажется неправильной. Кроме того, при использовании транзисторов нужно тщательно выбирать их по параметрам, а для этого необходимо иметь качественную измерительную аппаратуру. К сожалению, у двух одинаковых полупроводников разброс характеристик может быть очень большим. А это влияет на работу устройства.

Подключение коммутатора

Случаи бывают разными, не исключено, что придется вам менять проводку. Поэтому потребуется принимать во внимание назначение всех выводов на штекере коммутатора. Это позволит правильно провести подключение, причем риска вывести его из строя не будет. Первый вывод коммутатора – это выход. Другими словами, с него снимается усиленный сигнал. Его нужно соединять с выводом катушки «К». Второй контакт соединяется с массой – минусом аккумуляторной батареи.

Все три провода от датчика Холла идут на коммутатор ВАЗ. Причем сигнальный провод соединяется с шестым выводом коммутатора. Пятый – это вывод для питания (на нем напряжение стабильно 12 Вольт). Третий вывод коммутатора – масса (минус питания). Третий соединен внутри блока со вторым. А вот между четвертым, на который подается питание от АКБ, и пятым имеется постоянное сопротивление и стабилизатор напряжения.

Читайте также:  Советы для мужчин по автомобилям

Как осуществить проверку

Ничего сложного нет в этой процедуре. Самый простой способ – это использовать заведомо исправный узел, так как проверить коммутатор таким образом можно буквально за считанные минуты. Но если такового нет, а нужно определить точно, неисправность в катушке либо же в коммутаторе, разумнее использовать другие способы. Потребуется простая лампа накаливания. Если не знаете, где взять ее, то выкрутите из плафона освещения салона либо же из габаритных огней.

Один вывод лампы соединяете с минусом аккумуляторной батареи. Второй подключаете к выводу «1» коммутатора. Это тот самый вывод, с которого снимается усиленный сигнал. Если лампа загорается, то устройство исправно. Более совершенный метод проверки осуществляется при помощи осциллографа. На экране можно видеть величину и форму сигнала, а также сравнить его с эталонным.

Настройка зажигания

При настройке зажигания вам потребуется сделать самое главное – установить валы по меткам, чтобы газораспределение функционировало синхронно с работой поршневой группы. Это первое, что следует сделать перед тем как начать регулировку зажигания. Стоит заметить, что особых трудностей при настройке возникнуть не должно, особенно на автомобилях ВАЗ 2108-21099. Все дело в том, что распределитель зажигания на двигатели этих машин установить можно только в одном положении. Причем коммутатор зажигания при данной процедуре не подвергается никаким настройкам, так как их у него нет.

Корпус трамблера вращается вокруг своей оси, чтобы производить более точную регулировку. И этого оказывается достаточно. Чтобы точно установить момент, можно использовать простейшую схему, в качестве индикатора используется в ней простой светодиод. Датчик Холла отключается от системы, на его минусовой вывод подается плюс питания. Между «+» и сигнальным включается светодиод, для снижения напряжения последовательно с ним включается сопротивление 2 кОм. А вот плюс датчика Холла соединяется с массой. Теперь остается только медленно вращать корпус распределителя. Момент, когда засветится диод, будет являться искомым.

Выводы

Много преимуществ дает такой простой узел в бесконтактной системе зажигания, как коммутатор. Это и повышение мощности, пусть даже незначительное, и уменьшение расхода топлива, и значительное улучшение двигателя с точки зрения надежности. А главное – отпадает необходимость в постоянном контроле и своевременной настройке системы. Современному водителю не хочется заниматься ремонтом автомобиля, ему нужно средство передвижения. Причем надежное, которое не подведет в самый ответственный момент. Независимо от того, какой коммутатор используется в БСЗ, эффективность у него намного выше, нежели у контактного прерывателя.

Источник

Устройство автомобилей

Коммутаторы системы зажигания

Назначение и принцип работы коммутатора системы зажигания

В системе зажигания автомобильных двигателей для получения тока высокого напряжения, вызывающего искрообразование на электродах свечей, используется принцип электромагнитной индукции – катушка зажигания, представляющая собой своеобразный трансформатор, способна преобразовать напряжение бортовой цепи автомобиля (12 В) в напряжение, достигающее несколько тысяч вольт. Для этого необходимо периодически подавать и отключать ток от первичной цепи катушки зажигания, в результате чего постоянный ток бортовой цепи становится переменным (циклически изменяющимся по величине от нуля до 12 В и наоборот).
Первые системы зажигания двигателей использовали для этих целей устройства (прерыватели), смыкающие и размыкающие электрические контакты механическим способом. В принципе, эти устройства можно назвать родоначальниками современных коммутаторов автомобильных систем зажигания.

Однако, механические (контактные) коммутаторы имели ряд существенных недостатков, которые по мере развития и совершенствования автомобильных двигателей проявлялись все отчетливее. Контакты имели склонность к подгоранию, требовали систематической чистки и регулировки зазора, и не могли «похвастать» стабильностью создаваемого импульса по величине и продолжительности.
Кроме того, они обладали заметной инертностью, как и все механические устройства, что ограничивало возможности высокооборотистых двигателей, а недостаточно продолжительная и мощная искра была камнем преткновения для увеличения степени сжатия.
Тем не менее, такие системы зажигания длительное время использовались в автомобилях, и только появление и совершенствование полупроводниковых приборов позволило конструкторам совершить своеобразную революцию в способе коммутации управляющих импульсов.

На первых порах от использования механических контактов прерывателя конструкторы не отказались, но решили проблему с их электрической нагрузкой, приводящей к подгоранию. Через контакты прерывателя пропускался слабый ток управления, который подавался на базу мощного транзистора, служащего усилителем сигнала, поступающего в первичную цепь катушки зажигания.
Так появились контактно-транзисторные системы зажигания, и первые полупроводниковые коммутаторы. Впоследствии конструкторы систем зажигания отказались от механических контактов, использовав для формирования маломощного импульса различные магнитоэлектрические датчики, а также датчики, работающие на эффекте Холла.
Усовершенствование этих устройств продолжается и в настоящее время, при этом современные коммутаторы автомобильных систем зажигания совершенно отличаются от своих механических и даже транзисторных «предков».

Применение полупроводниковых и микропроцессорных коммутаторов в контактно-транзисторных или бесконтактных системах зажигания позволяет получить следующие преимущества:

В целом увеличивается надежность работы системы зажигания и снижается трудоемкость ее технического обслуживания.

Выпускаемые коммутаторы контактно-транзисторных и бесконтактных систем зажигания делятся на три группы:

Коммутаторы для контактно-транзисторных систем зажигания

Коммутаторы контактно-транзисторных систем и коммутаторы с постоянной скважностью импульсов выходного тока для бесконтактных систем зажигания функционально просты и содержат небольшое количество полупроводниковых компонентов (как правило, не более четырех транзисторов). Они относятся к первой группе. Их основой служит литой алюминиевый корпус, имеющий ребристую наружную поверхность для улучшения теплоотдачи.
Внутри корпуса расположены все элементы коммутатора за исключением выходного транзистора, который монтируется на корпусе в специальном кармане.

Для многих типов транзисторов (например, n-p-n) необходима изоляция от корпуса коммутатора, поэтому они монтируются через специальную прокладку. Для снижения теплового сопротивления перехода между корпусом коммутатора и прокладкой наносят теплопроводные пасты, благодаря чему охлаждение выходного транзистора более интенсивно.
Для подключения коммутатора к бортовой сети автомобиля и к элементам системы зажигания используется клеммная колодка.

Коммутатор ТК102

На рис. 1 показан коммутатор ТК102, относящийся к первой группе, который предназначен для работы в контактно-транзисторной системе зажигания автомобилей с восьмицилиндровыми двигателями, но может быть использован для работы с любым классическим распределителем зажигания. В качестве нагрузки используется катушка Б114 (W2/W1 = 235; L1 = 3,7 мГн; R1 = 0,42 Ом).
Для ограничения первичного тока используется добавочное сопротивление СЭ107 (1,04 Ом). Коммутатор ТК102 имеет один мощный германиевый транзистор ГТ701А (VT1), стабилитрон Д817В (VD2) и диод Д7Ж (VD1), служащие для защиты от перенапряжения силового транзистора VT1.
Дроссель L1 и резистор R1 предназначены для ускорения процесса запирания транзистора VT1, конденсатор С1 первичного контура возбуждения катушки зажигания и конденсатор С2 служат для защиты компонентов схемы коммутатора от скачков напряжения в бортовой сети автомобиля.
В случае отказа коммутатора (например, при выходе из строя транзистора) можно перекинуть провода в стандартное положение, и двигатель продолжит работать, что позволит водителю добраться до места ремонта.

Коммутаторы для бесконтактных систем зажигания

Коммутаторы этого типа используются в системах зажигания, где для формирования импульса управления током первичной цепи катушки зажигания используются не механически управляемые контакты, а магнитоэлектрические датчики.

Электронные коммутаторы бесконтактных систем зажигания выполняют следующие функции:

Различные коммутаторы могут выполнять и дополнительные функции:

На входные клеммы коммутатора поступают импульсы управления, формируемые бесконтактным датчиком углового положения коленчатого вала двигателя или электронным регулятором напряжения – коллектором.
Выходом (нагрузкой) коммутатора является первичная обмотка катушки (или катушек) зажигания. В случае, когда коммутатор обслуживает две или несколько катушек, он выполняет функцию распределителя высоковольтных импульсов по цилиндрам двигателя.

Многочисленные коммутаторы бесконтактных систем зажигания можно разделить на две группы:

Общим для обеих групп коммутаторов является наличие в выходной цепи мощного выходного транзистора, способного коммутировать токи амплитудой до 10 А в индуктивной нагрузке коллектора.

Читайте также:  Когда можно вернуть автомобиль дилеру

Коммутатор 13.3734

Примером коммутаторов для бесконтактных систем зажигания может служить коммутатор 13.3734, разработанный на базе первого серийного отечественного коммутатора ТК200 «Искра». Коммутатор предназначен для совместной работы с бесконтактным магнитоэлектрическим датчиком, катушкой зажигания Б116 и добавочным сопротивлением 14.379.

Коммутатор 13.3734 (рис. 2) содержит выходной резистор VT3 (КТ848А), каскад предварительного усиления на транзисторе VT2 (КТ630Б) и резисторе R7, формирователь сигнала датчика на транзисторе VT1 (КТ630Б) и элементах R1-R8, С1, VD1, VD2.

Между выходом и входом коммутатора имеется положительная обратная связь (R10, С7), обеспечивающая стабильную работу коммутатора на пусковых частотах вращения валика распределителя (20…30 об/мин). Цепь R3-С1 служит для уменьшения электрического смещения момента зажигания в зависимости от частоты вращения вала датчика.

Коммутатор содержит также элементы схемы (С2-С4, VD3, VD4, R8) и цепи защиты выходного транзистора (С5, С6, R9). Коммутатор выполнен на печатной плате, на которой смонтированы маломощные элементы схемы. Плата установлена в оребренный литой дюралюминиевый корпус, где размещены силовые элементы.

Коммутаторы с нормируемой скважностью импульсов выходного тока

Коммутатор 36.3734

Первый отечественный коммутатор 36.3734 с нормируемой скважностью импульсов выходного тока, применяемый на автомобиле ВАЗ-2108, выполнен также по дискретной технологии и предназначен для работы с бесконтактным датчиком, работающим на эффекте Холла.
В качестве нагрузки используется катушка зажигания 27.3705 (W2/W1 = 85; L1 = 3,8 мГн; R1 = 0,5 Ом).

В коммутаторе 36.3734 реализовано программное регулирование времени накопления энергии в первичной обмотке катушки зажигания, активное ограничение уровня первичного тока (8…9 А), ограничение амплитуды импульса первичного напряжения (350…380 В), безыскровое отключение первичного тока при остановленном двигателе (Тоткл = 1,53 с). Последнее предназначено для плавного запирания коммутационного транзистора для предотвращения искрообразования при остановке двигателя, когда катушка зажигания осталась под током.

В коммутаторе 36.3734 функциональные основные узлы выполнены на операционных усилителях DA1.1-DA1.4, которые являются компонентами микросхемы К1401УД1.
На базе усилителей DA12 и DA13 реализованы интегратор и компаратор (нормирование скважности импульсов) выходного тока. На усилителе DA1.1 собрана схема безыскрового отключения тока, на усилителе DA1.4 – компаратор ограничения амплитуды выходного тока. В качестве выходного транзистора применен транзистор Дарлингтона КТ848А.
Конструктивно коммутатор представляет собой печатную плату, на которой размещены радиокомпоненты схемы, за исключением выходного транзистора VT4, защитного диода VD7 и стабилитрона VD4 ограничителя напряжения питания, которые смонтированы на корпусе коммутатора.
Для подключения коммутатора к бесконтактному датчику Холла, к катушке зажигания и источнику питания используется съемно-контактный разъем.

Коммутатор 42.3734

Идеи программного регулирования скважности импульсов выходного тока реализованы также в системах зажигания с низковольтным распределением высоковольтных импульсов напряжения. При этом коммутаторы обычно выполняются двухканальными – обслуживающими две катушки зажигания.

Электрическая схема дискретного двухканального коммутатора 42.3734 разработана на основе электрической схемы коммутатора 36.3734. Основное различие заключается в наличии двух выходных каскадов (VT4, VT6 и VT5, VT7), управляющих работой выходных транзисторов VT8 и VT9. В свою очередь выходные каскады управления каналов коммутатора посредством ключевого каскада на транзисторе VT2 (КТ342А).
Схема коммутатора также снабжена устройством формирования сигнала для управления тахометром (VD14, VD15, R53, R54).

Коммутатор 42.3734 выполнен на двух печатных платах (рис. 3): плате управления А1, на которой размещена операционная часть коммутатора, и силовой плате А2 с элементами выходных каскадов и выходными транзисторами. Причем последние смонтированы на дополнительном теплоотводе. Платы установлены в корпусе одна над другой.

Достоинства и недостатки различных типов коммутаторов

К недостаткам коммутаторов первой группы можно отнести большие габаритные размеры и массу, а также при крупносерийном производстве низкую технологичность и недостаточную надежность в связи с большим числом радиокомпонентов.

Существенного снижения массогабаритных показателей можно добиться при изготовлении коммутаторов по толстопленочной технологии с применением стандартных бескорпусных компонентов. Однако такая технология является относительно дорогой и трудоемкой, поэтому не нашла широкого применения в промышленном крупносерийном производстве коммутаторов.

Наилучшими показателями с точки зрения трудоемкости и технологичности производства, а также надежности обладают коммутаторы третьей группы, которые содержат специальную микросхему, где размещаются основные функциональные узлы: схема нормирования скважности с адаптацией по уровню выходного тока, схема безыскрового отключения тока, устройство ограничения тока и др. По гибридной толстопленочной технологии выполняется силовая часть схемы коммутатора с элементами защиты от импульсных перегрузок по цепи питания. Примером использования этой технологии может служить коммутатор 0.227.100.103 фирмы «Бош» (Германия), схема которого приведена на рис. 4.

В схему входят следующие элементы: бескорпусной выходной транзистор VT1; специализированная микросхема DA1 (МА 7355) с миниатюрными навесными конденсаторами С2-С5, выполняющая основные функции коммутатора; корпусные диод VD1, стабилитрон VD2, миниатюрный конденсатор С1 и толстопленочные резисторы R3, R4, выполняющие функции защиты от импульсных перенапряжений в бортовой сети и перепутывания полярности аккумуляторной батареи.

Также имеются толстопленочные резисторы, служащие для изменения и подстройки требуемых уровней первичного тока (R6, R7, R10) и первичного напряжения (R8, R9). Цепь защиты выходного транзистора выполнена на дискретных элементах С7 и R11.

Налажен выпуск аналогичных коммутаторов, выполненных в виде большой гибридной интегральной схемы (БГИС), представляющей собой толстопленочную микросборку операционной части и микросборку силовой части коммутатора, смонтированные на медном основании СА из полимерного материала. Причем корпус выполнен заодно с семиштырьковым разъемом. Корпус герметизируется приклеиваемой крышкой. Подложками толстопленочных сборок служит алюмооксидная керамика (Al2O3).
Внешний вид одноканального и двухканального коммутаторов показан на рис. 5.

По мере развития цифровой и микропроцессорной техники и разработки комплексных систем управления двигателем транзисторный коммутатор, сохраняя свое функциональное назначение, в конструктивном плане может не иметь очертания самостоятельного изделия, объединяясь в единую конструкцию с цифровым контроллером. Следующим шагом на пути интеграции электронного блока является передача функции нормирования скважности импульса выходного тока в схему контроллера. В этом случае модуль коммутатора реализует функции распределения высоковольтных импульсов, ограничения тока и первичного напряжения, выдачи сигнала обратной связи об уровне тока в катушке зажигания.

Контроллеры

Выпускаются контроллеры серии МС2715.03 для легковых автомобилей ВАЗ-21083 и МС2713.01 для грузовых автомобилей ЗИЛ-4314, предназначенные для управления углом опережения зажигания по оптимальной характеристике регулирования на основе информации от датчиков начала отсчета, частоты вращения коленчатого вала двигателя, разрежения в задроссельном пространстве карбюратора (или впускном трубопроводе инжекторного двигателя) и температуры охлаждающей жидкости.

Контроллеры осуществляют также управление электроклапаном экономайзера принудительного холостого хода (ЭПХХ). Контроллер МС2715.03 для легковых автомобилей с четырехтактным четырехцилиндровым двигателем вырабатывает сигнал «Выбор канала» для обеспечения функции статического распределения энергии по цилиндрам двигателя.

Структурная схема контроллера приведена на рис. 6. На выводы контроллера поступают сигналы датчика начала отсчета (НО), датчика угловых импульсов (УИ), датчика частоты вращения коленчатого вала (КВ), датчика разрежения (Р), датчика температуры охлаждающей жидкости (Тохл).

После обработки сигналов датчиков в аналого-цифровом преобразователе (АЦП) информация о параметрах двигателя в виде цифровых кодов поступает в процессор, который производит вычисление частоты вращения коленчатого вала двигателя, разрежения, температуры, углового положения коленчатого вала двигателя и на основании этих данных вычисляет угол опережения зажигания в соответствии с картой углов опережения зажигания двигателя, которая хранится в памяти процессора.
Синхронизация работы контроллера с работой двигателя и формирование сигнала «Выбор канала» производится посредством импульсов датчика НО. Выходные сигналы процессора управляют работой формирователей импульса зажигания (ФИЗ) и выбора канала усилителя ЭПХХ. Сигналы ФИЗ и ВК непосредственно управляют работой двухканального коммутатора.

Источник

Поделиться с друзьями
Практические советы по железу и огороду
Adblock
detector